论文标题

装饰增强的Teichmüller空间

Decorated enhanced Teichmüller spaces

论文作者

Miguchi, Katsuhiro

论文摘要

在本文中,我们介绍了Teichmüller空间的新变化,即表面上具有增强和装饰的表面上双曲线结构的变形空间。我们构建了此变形空间的参数化,这是剪切坐标和$λ$ - 长度坐标的常见概括。此外,我们介绍了与此变形空间相对应的层压空间,并显示了剪切坐标和$λ$ - 长度坐标的兼容性。

In this paper, we introduce a new variation of the Teichmüller space, namely the deformation space of hyperbolic structures on a surface with both enhancement and decoration. We construct the parameterization of this deformation space, which is a common generalization of the shear coordinates and the $λ$-length coordinates. Furthermore, we introduce the lamination space corresponding to this deformation space, and show the compatibility of the shear coordinates and the $λ$-length coordinates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源