论文标题
装饰增强的Teichmüller空间
Decorated enhanced Teichmüller spaces
论文作者
论文摘要
在本文中,我们介绍了Teichmüller空间的新变化,即表面上具有增强和装饰的表面上双曲线结构的变形空间。我们构建了此变形空间的参数化,这是剪切坐标和$λ$ - 长度坐标的常见概括。此外,我们介绍了与此变形空间相对应的层压空间,并显示了剪切坐标和$λ$ - 长度坐标的兼容性。
In this paper, we introduce a new variation of the Teichmüller space, namely the deformation space of hyperbolic structures on a surface with both enhancement and decoration. We construct the parameterization of this deformation space, which is a common generalization of the shear coordinates and the $λ$-length coordinates. Furthermore, we introduce the lamination space corresponding to this deformation space, and show the compatibility of the shear coordinates and the $λ$-length coordinates.