论文标题

未标记的数据改善了协变量偏移下的贝叶斯不确定性校准

Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift

论文作者

Chan, Alex J., Alaa, Ahmed M., Qian, Zhaozhi, van der Schaar, Mihaela

论文摘要

现代神经网络已被证明是功能强大的近似器,可在多种应用中提供最先进的性能。但是,他们缺乏量化对预测信心的能力 - 这在涉及关键决策的高风险应用中至关重要。贝叶斯神经网络(BNNS)旨在通过对网络的参数进行先前的分布来解决此问题,从而诱导封装预测不确定性的后验分布。尽管基于蒙特卡洛辍学的BNN的现有变体对分布数据的可靠(尽管是近似)的不确定性估计值,但它们倾向于对目标数据的预测表现出过于自信,而目标数据的特征分布与训练数据不同,即协变量偏移设置。在本文中,我们基于后正规化开发了近似的贝叶斯推理方案,其中未标记的目标数据用作模型置信的“伪标记”,用于将模型在标记的源数据上的损失方向化。我们表明,这种方法显着提高了协变量数据集的不确定性量化的准确性,对基础模型体系结构的修改很小。我们在将前列腺癌的预后模型转移到全球多样性的种群中,证明了我们方法的实用性。

Modern neural networks have proven to be powerful function approximators, providing state-of-the-art performance in a multitude of applications. They however fall short in their ability to quantify confidence in their predictions - this is crucial in high-stakes applications that involve critical decision-making. Bayesian neural networks (BNNs) aim at solving this problem by placing a prior distribution over the network's parameters, thereby inducing a posterior distribution that encapsulates predictive uncertainty. While existing variants of BNNs based on Monte Carlo dropout produce reliable (albeit approximate) uncertainty estimates over in-distribution data, they tend to exhibit over-confidence in predictions made on target data whose feature distribution differs from the training data, i.e., the covariate shift setup. In this paper, we develop an approximate Bayesian inference scheme based on posterior regularisation, wherein unlabelled target data are used as "pseudo-labels" of model confidence that are used to regularise the model's loss on labelled source data. We show that this approach significantly improves the accuracy of uncertainty quantification on covariate-shifted data sets, with minimal modification to the underlying model architecture. We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源