论文标题
能源的电气定义了液体脱落纳米片的尺寸厚度关系
Equipartition of Energy Defines the Size-Thickness Relationship in Liquid-Exfoliated Nanosheets
论文作者
论文摘要
液相去角质是一种常用的方法,可从一系列分层晶体产生2D纳米片。但是,这种纳米片显示出较大的尺寸和厚度分布以及面积与厚度之间的相关性,这些问题限制了纳米片的应用潜力。为了了解控制去角质过程的因素,我们具有液体脱落的11种不同的分层材料,在使用AFM来测量每个分数的纳米片长度,宽度和厚度分布之前,将尺寸选择分为分数。最终的数据显示,纳米片面积的明确幂律缩放为每种材料的厚度。我们已经开发了一个简单的基于热力学的非平衡模型,预测幂律的预成绩与平面内/平面外式式能量的比例成正比,并且平面/面内/平面外模量是成正比的。通过将实验数据与第一原理计算的模量比进行比较,我们发现实验和理论之间的一致性是密切的一致性。这支持了我们的假设,即在超声辅助去角质过程中,能量等级在纳米片撕裂和剥离之间保持。
Liquid phase exfoliation is a commonly used method to produce 2D nanosheets from a range of layered crystals. However, such nanosheets display broad size and thickness distributions and correlations between area and thickness, issues that limit nanosheet application potential. To understand the factors controlling the exfoliation process, we have liquid-exfoliated 11 different layered materials, size-selecting each into fractions before using AFM to measure the nanosheet length, width, and thickness distributions for each fraction. The resultant data show a clear power-law scaling of nanosheet area with thickness for each material. We have developed a simple nonequilibrium thermodynamics-based model predicting that the power-law prefactor is proportional to both the ratios of in-plane-tearing/out-of-plane-peeling energies and in-plane/out-of-plane moduli. By comparing the experimental data with the modulus ratio calculated from first-principles, we find close agreement between experiment and theory. This supports our hypothesis that energy equipartition holds between nanosheet tearing and peeling during sonication-assisted exfoliation.