论文标题
$ \ mathbb {r}^3 $的全球强解决方案用于离子Vlasov-Poisson Systems
Global strong solutions in $\mathbb{R}^3$ for ionic Vlasov-Poisson systems
论文作者
论文摘要
Vlasov-Poisson类型的系统是描述稀释血浆的动力学模型。该模型的结构根据它描述了等离子体中的电子还是带正电荷的离子。与电子案例相反,弗拉索夫 - 波森系统的适应性理论已经建立了良好,最近已经研究了离子模型的适当性理论。在本文中,我们证明了两个用于离子的Vlasov-Poisson系统的全球适应性,在整个三维欧几里得空间上构成了$ \ Mathbb {r}^3 $,这是对初始数据和限制电位的最小化假设。
Systems of Vlasov-Poisson type are kinetic models describing dilute plasma. The structure of the model differs according to whether it describes the electrons or positively charged ions in the plasma. In contrast to the electron case, where the well-posedness theory for Vlasov-Poisson systems is well established, the well-posedness theory for ion models has been investigated more recently. In this article, we prove global well-posedness for two Vlasov-Poisson systems for ions, posed on the whole three-dimensional Euclidean space $\mathbb{R}^3$, under minimal assumptions on the initial data and the confining potential.