论文标题

QCLUSTER:用于流程计划的聚类数据包

QCluster: Clustering Packets for Flow Scheduling

论文作者

Yang, Tong, Li, Jizhou, Zhao, Yikai, Yang, Kaicheng, Wang, Hao, Jiang, Jie, Zhang, Yinda, Zhang, Nicholas

论文摘要

流程计划在数据中心中至关重要,因为它直接影响了应用程序的用户体验。根据不同的假设和设计目标,有四个典型的流程调度问题/解决方案:SRPT,LAS,公平排队和截止日期的时间表。当在有限的队列中实现这些解决方案时,他们需要通过预先测量流量来设置静态参数,而最佳参数在时间和空间上会有所不同。本文提出了一个通用框架,即QCLUSTER,以适应有限数量的队列的所有调度问题。 QCluster的关键思想是将具有相似权重/属性的数据包聚类到同一队列中。 QCluster在Tofino交换机中实现,并且可以以3.2 TBP的速度群集数据包。据我们所知,QCluster是最快的聚类算法。通过可编程开关和NS-2测试的实验结果表明,QCLUSTER可将短流量的平均流量完成时间(FCT)降低到最高56.6%,并将总体平均FCT降低到最新的FCT高达21.7%。 NS-2中的所有源代码均在GitHub中可用。

Flow scheduling is crucial in data centers, as it directly influences user experience of applications. According to different assumptions and design goals, there are four typical flow scheduling problems/solutions: SRPT, LAS, Fair Queueing, and Deadline-Aware scheduling. When implementing these solutions in commodity switches with limited number of queues, they need to set static parameters by measuring traffic in advance, while optimal parameters vary across time and space. This paper proposes a generic framework, namely QCluster, to adapt all scheduling problems for limited number of queues. The key idea of QCluster is to cluster packets with similar weights/properties into the same queue. QCluster is implemented in Tofino switches, and can cluster packets at a speed of 3.2 Tbps. To the best of our knowledge, QCluster is the fastest clustering algorithm. Experimental results in testbed with programmable switches and ns-2 show that QCluster reduces the average flow completion time (FCT) for short flows up to 56.6%, and reduces the overall average FCT up to 21.7% over state-of-the-art. All the source code in ns-2 is available in Github without.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源