论文标题
rpm-net:反复预测运动和点云的零件
RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud
论文作者
论文摘要
我们介绍了RPM-NET,这是一种基于深度学习的方法,同时渗透了可移动的零件,并从单个,未分段的,可能是部分的3D点云形状中幻觉。 rpm-net是一种新型的复发性神经网络(RNN),由带有交织的长短期内存(LSTM)组件的编码器对组成,共同预测输入点云的点位位移的时间序列。同时,这些位移使网络可以学习可移动零件,从而导致基于运动的形状分割。 rpm-net在获得的零件上的递归应用可以预测较高的零件运动,从而导致层次对象分割。此外,我们开发了一个单独的网络来估计零件迁移率,例如,从分段运动序列中估计每部分运动参数。这两个网络都从训练集中学习了深层的预测模型,该模型体现了各种物体的各种迁移率。我们显示了同时运动的结果和零件预测,从3D对象的合成和真实扫描显示出表现出各种零件迁移率,可能涉及多个可移动部分。
We introduce RPM-Net, a deep learning-based approach which simultaneously infers movable parts and hallucinates their motions from a single, un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a novel Recurrent Neural Network (RNN), composed of an encoder-decoder pair with interleaved Long Short-Term Memory (LSTM) components, which together predict a temporal sequence of pointwise displacements for the input point cloud. At the same time, the displacements allow the network to learn movable parts, resulting in a motion-based shape segmentation. Recursive applications of RPM-Net on the obtained parts can predict finer-level part motions, resulting in a hierarchical object segmentation. Furthermore, we develop a separate network to estimate part mobilities, e.g., per-part motion parameters, from the segmented motion sequence. Both networks learn deep predictive models from a training set that exemplifies a variety of mobilities for diverse objects. We show results of simultaneous motion and part predictions from synthetic and real scans of 3D objects exhibiting a variety of part mobilities, possibly involving multiple movable parts.