论文标题
单调通用Alpa-Nonexpansive映射的存在和收敛定理在均匀凸的部分均一均方双曲线范围及其应用
Existence and convergence theorems for monotone generalized alpa-nonexpansive mappings in uniformly convex partially ordered hyperbolic metric spaces and its application
论文作者
论文摘要
在本文中,我们概括了[14]中的存在,并在[12,16]中证明了迭代方案的收敛定理,用于单酮通用的Alpa-Nonexpansive映射,部分均匀地凸出的双曲线公制空间。我们还给出了一个数值示例,以表明该方案收敛的速度比[14]中的方案更快,并将结果应用于积分方程。
In this paper, we generalize the existence result in [14] and prove convergence theorems of the iterative scheme in [12, 16] for monotone generalized alpa-nonexpansive mappings in uniformly convex partially ordered hyperbolic metric spaces. And we also give a numerical example to show that this scheme converges faster than the scheme in [14] and apply the result to the integral equation.