论文标题

星系形态网络:用于研究形态和淬火$ \ sim 100,000 $ SDSS和$ \ sim 20,000 $ candels Galaxies的卷积神经网络

Galaxy Morphology Network: A Convolutional Neural Network Used to Study Morphology and Quenching in $\sim 100,000$ SDSS and $\sim 20,000$ CANDELS Galaxies

论文作者

Ghosh, Aritra, Urry, C. Megan, Wang, Zhengdong, Schawinski, Kevin, Turp, Dennis, Powell, Meredith C.

论文摘要

我们检查了形态分离的颜色质量图,以研究$ \ sim 100,000 $($ z \ sim0 $)斯隆数字天空调查(SDSS)和$ \ sim 20,000 $($ z \ sim1 $)cesmic cesmic cosmic cosmic cosmic组装近红外深处的深度外乳突式遗产调查(糖果)的Galaxies Galaxies。为了形态学对星系进行分类,我们开发了星系形态网络(Gamornet),这是一个卷积神经网络,根据其凸起的光比对星系进行了分类。 Gamornet不需要大量的真实数据训练集,并且可以应用于具有一系列信噪比和空间分辨率的数据集。 Gamornet的源代码以及受过训练的模型作为这项工作的一部分公开(http://www.astro.yale.edu/aghosh/gamornet.html)。我们首先对Gamornet进行了训练,用于使用凸起和磁盘组件的星系模拟,然后使用每个数据集中的$ \ sim25 \%$学习的转移,以实现$ \ lyssim5 \%$的错误分类率。星系的错误分类样本由信噪比低的小星系主导。使用Gamornet分类,我们发现凸出和磁盘主导的星系具有不同的颜色质量图,与以前的研究一致。对于SDS和烛台,蓝云的磁盘为主导的星系在众多质量上达到峰值,这与恒星形成气体的缓​​慢耗尽而没有快速淬火。在高质量上发现了少量的红色磁盘($ \ sim14 \%$ $ z \ sim0 $,$ z \ sim 1 $ $ z \%$ $ 2 \%$)。相比之下,以凸起为主导的星系为红色,朝蓝色云的数量较小,这表明在整个绿色山谷中迅速淬火和快速发展。这种推断的淬火机制差异与以前的研究一致,该研究使用了$ z \ sim0 $和$ z \ sim1 $的其他形态分类技术。

We examine morphology-separated color-mass diagrams to study the quenching of star formation in $\sim 100,000$ ($z\sim0$) Sloan Digital Sky Survey (SDSS) and $\sim 20,000$ ($z\sim1$) Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) galaxies. To classify galaxies morphologically, we developed Galaxy Morphology Network (GaMorNet), a convolutional neural network that classifies galaxies according to their bulge-to-total light ratio. GaMorNet does not need a large training set of real data and can be applied to data sets with a range of signal-to-noise ratios and spatial resolutions. GaMorNet's source code as well as the trained models are made public as part of this work ( http://www.astro.yale.edu/aghosh/gamornet.html ). We first trained GaMorNet on simulations of galaxies with a bulge and a disk component and then transfer learned using $\sim25\%$ of each data set to achieve misclassification rates of $\lesssim5\%$. The misclassified sample of galaxies is dominated by small galaxies with low signal-to-noise ratios. Using the GaMorNet classifications, we find that bulge- and disk-dominated galaxies have distinct color-mass diagrams, in agreement with previous studies. For both SDSS and CANDELS galaxies, disk-dominated galaxies peak in the blue cloud, across a broad range of masses, consistent with the slow exhaustion of star-forming gas with no rapid quenching. A small population of red disks is found at high mass ($\sim14\%$ of disks at $z\sim0$ and $2\%$ of disks at $z \sim 1$). In contrast, bulge-dominated galaxies are mostly red, with much smaller numbers down toward the blue cloud, suggesting rapid quenching and fast evolution across the green valley. This inferred difference in quenching mechanism is in agreement with previous studies that used other morphology classification techniques on much smaller samples at $z\sim0$ and $z\sim1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源