论文标题
几何减法通过一环射流功能
One-loop Jet Functions by Geometric Subtraction
论文作者
论文摘要
在散射过程的横截面的分解公式中,用喷射函数描述了最终状态喷气机,这是重新召集大对数的关键成分。我们提出了一种通过使用几何减法方案来计算通用单环函数的方法。此方法导致切片过程产生的本地反对物。并且其分析整合特别简单。对可观察的依赖性软术的方位角上获得分析,直至在方位角上获得的积分。两极仅取决于可观察到的软限制,其特征是功率定律,而有限项则写为数值积分。我们通过重现通过锥形或$ k_t $算法定义的角度,喷射形状和喷气机的射流功能的已知表达式来说明我们的方法。作为一个新结果,我们获得了$ e^+e^ - $碰撞的角度测量的一环射流函数,该函数是正式支持但潜在的后坐力效应的效果。本文随附的Gojet Mathematica软件包,我们的方法的实现可提供。
In factorization formulae for cross sections of scattering processes, final-state jets are described by jet functions, which are a crucial ingredient in the resummation of large logarithms. We present an approach to calculate generic one-loop jet functions, by using the geometric subtraction scheme. This method leads to local counterterms generated from a slicing procedure; and whose analytic integration is particularly simple. The poles are obtained analytically, up to an integration over the azimuthal angle for the observable-dependent soft counterterm. The poles depend only on the soft limit of the observable, characterized by a power law, and the finite term is written as a numerical integral. We illustrate our method by reproducing the known expressions for the jet function for angularities, the jet shape, and jets defined through a cone or $k_T$ algorithm. As a new result, we obtain the one-loop jet function for an angularity measurement in $e^+e^-$ collisions, that accounts for the formally power-suppressed but potentially large effect of recoil. An implementation of our approach is made available as the GOJet Mathematica package accompanying this paper.