论文标题
无监督视觉功能学习的参数实例分类
Parametric Instance Classification for Unsupervised Visual Feature Learning
论文作者
论文摘要
本文为无监督的视觉特征学习提供了参数实例分类(PIC)。与以双分支非参数方式实例歧视的最先进方法不同,PIC直接执行一个单元素参数实例分类,揭示了一个类似于监督分类的简单框架,而无需解决信息泄漏问题。我们表明,简单的PIC框架可以通过调整最新方法中使用的几种常见组件设置来与最先进的方法(即SIMCLR和MOCO V2)一样有效。我们还提出了两种新型技术,以进一步提高PIC的有效性和实用性:1)滑动窗口数据调度程序,而不是先前的基于时期的数据调度程序,该调度程序解决了PIC中极不经常访问的实例并提高了效率; 2)一种负面的采样和重量更新校正方法,以减少训练时间和GPU记忆消耗,这也使PIC应用于几乎无限的培训图像。我们希望PIC框架可以作为促进未来研究的简单基准。
This paper presents parametric instance classification (PIC) for unsupervised visual feature learning. Unlike the state-of-the-art approaches which do instance discrimination in a dual-branch non-parametric fashion, PIC directly performs a one-branch parametric instance classification, revealing a simple framework similar to supervised classification and without the need to address the information leakage issue. We show that the simple PIC framework can be as effective as the state-of-the-art approaches, i.e. SimCLR and MoCo v2, by adapting several common component settings used in the state-of-the-art approaches. We also propose two novel techniques to further improve effectiveness and practicality of PIC: 1) a sliding-window data scheduler, instead of the previous epoch-based data scheduler, which addresses the extremely infrequent instance visiting issue in PIC and improves the effectiveness; 2) a negative sampling and weight update correction approach to reduce the training time and GPU memory consumption, which also enables application of PIC to almost unlimited training images. We hope that the PIC framework can serve as a simple baseline to facilitate future study.