论文标题

准阳性表面和可分解的拉格朗日

Quasipositive surfaces and decomposable Lagrangians

论文作者

Tovstopyat-Nelip, Lev

论文摘要

我们表明,具有断开边界的准表面在其边界组件的结节浮子同源组之间诱导了保存横向不变性的图。作为一种应用,我们表明这种不变的可用于阻碍温斯坦同居中任意属的可分解的拉格朗日谱。我们的地图的构造依赖于横向不变的合理性。在此过程中,我们还恢复了在接触+1手术下不变的各种自然陈述。

We show that a quasipositive surface with disconnected boundary induces a map between the knot Floer homology groups of its boundary components preserving the transverse invariant. As an application, we show that this invariant can be used to obstruct decomposable Lagrangian cobordisms of arbitrary genus within Weinstein cobordisms. The construction of our maps rely on the comultiplicativity of the transverse invariant. Along the way, we also recover various naturality statements for the invariant under contact +1 surgery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源