论文标题

可解决的鲍姆斯拉格 - 统治者组的增长率的新证明

A new proof of the growth rate of the solvable Baumslag-Solitar groups

论文作者

Taback, Jennifer, Walker, Alden

论文摘要

我们为大量$ bs(1,n)$的大量元素展示了常规的大地测量语言,并表明该语言的增长率是该组的增长率。这提供了$ bs(1,n)$的增长率的直接计算,该$最初是由Collins,Edjvet和Gill在[5]中计算的。我们的方法基于[8]中我们在[8]中开发的方法,以表明$ bs(1,n)$具有正面,负和零轭曲率元素的正密度,如Bar-Natan,Duchin和Kropholler在[1]中所引入的。

We exhibit a regular language of geodesics for a large set of elements of $BS(1,n)$ and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of $BS(1,n)$, which was initially computed by Collins, Edjvet and Gill in [5]. Our methods are based on those we develop in [8] to show that $BS(1,n)$ has a positive density of elements of positive, negative and zero conjugation curvature, as introduced by Bar-Natan, Duchin and Kropholler in [1].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源