论文标题
小型数据环境的数据驱动市场模拟器
A Data-driven Market Simulator for Small Data Environments
论文作者
论文摘要
基于神经网络的数据驱动的市场模拟推出了一种建模金融时间序列的新方法,而不会对基本随机动态施加假设。尽管从这个意义上讲,生成市场模拟是无模型的,但具体的建模选择仍然是模拟路径的特征决定性的。我们简要概述了当前使用的生成建模方法和财务时间序列的绩效评估指标,并解决了一些挑战,以在后者中取得良好的结果。我们还将某些市场模拟的经典方法与基于生成建模的模拟进行了对比,并突出了新方法的一些优势和陷阱。尽管大多数生成模型倾向于依靠大量的培训数据,但我们在这里提出了一种生成模型,该模型在众所周知的可用培训数据量很小的环境中可靠地工作。此外,我们展示了如何在稀缺的可用培训数据的此类环境中编码和评估财务时间序列的艰难路径观点与简约的变分自动编码器框架相结合。最后,我们还为财务时间序列提出了合适的绩效评估指标,并讨论了我们市场生成器与深度套期保值的一些联系。
Neural network based data-driven market simulation unveils a new and flexible way of modelling financial time series without imposing assumptions on the underlying stochastic dynamics. Though in this sense generative market simulation is model-free, the concrete modelling choices are nevertheless decisive for the features of the simulated paths. We give a brief overview of currently used generative modelling approaches and performance evaluation metrics for financial time series, and address some of the challenges to achieve good results in the latter. We also contrast some classical approaches of market simulation with simulation based on generative modelling and highlight some advantages and pitfalls of the new approach. While most generative models tend to rely on large amounts of training data, we present here a generative model that works reliably in environments where the amount of available training data is notoriously small. Furthermore, we show how a rough paths perspective combined with a parsimonious Variational Autoencoder framework provides a powerful way for encoding and evaluating financial time series in such environments where available training data is scarce. Finally, we also propose a suitable performance evaluation metric for financial time series and discuss some connections of our Market Generator to deep hedging.