论文标题

用单色树覆盖$ 3 $ - 边缘色的随机图

Covering $3$-edge-coloured random graphs with monochromatic trees

论文作者

Kohayakawa, Yoshiharu, Mendonça, Walner, Mota, Guilherme Oliveira, Schülke, Bjarne

论文摘要

我们研究了确定需要多少个单色树来覆盖边彩随机图的顶点的问题。更确切地说,我们表明,对于$ p \ gg n^{ - 1/6} {(\ ln n)}}^{1/6} $,在任何$ 3 $ - edge-gedy-gedy-gedy-geend-edge-edgoling of togragr $ g(n,p)$中,我们可以找到三个单色树,以使他们的联盟覆盖所有角色。对于三种颜色,这是Bucić,Korándi和Sudakov的结果。

We investigate the problem of determining how many monochromatic trees are necessary to cover the vertices of an edge-coloured random graph. More precisely, we show that for $p\gg n^{-1/6}{(\ln n)}^{1/6}$, in any $3$-edge-colouring of the random graph $G(n,p)$ we can find three monochromatic trees such that their union covers all vertices. This improves, for three colours, a result of Bucić, Korándi and Sudakov.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源