论文标题

来自边界的随机跳跃的多维扩散操作员的光谱分析

Spectral analysis of the multi-dimensional diffusion operator with random jumps from the boundary

论文作者

Krejcirik, David, Lotoreichik, Vladimir, Pankrashkin, Konstantin, Tušek, Matěj

论文摘要

我们开发了一种希尔伯特空间的方法,用于在2007年Ben-Ari和Pinsky引入的边界中布朗运动的扩散过程,并从2007年引入的边界。该过程的发生器是由一个可通过非偏置和非端口边界范围的临界值衡量的,由可衡量的正方形功能的扩散椭圆形差异操作员引入。我们获得了一种表达式,以表达运算符的分解与其Dirichlet实现的差异之间的差异。我们证明了数值范围是整个复杂平面,尽管频谱纯粹是离散的,并且包含在半平面中。此外,对于具有正方形的密度的绝对连续概率度量的类别,我们表征了伴随运算符,并证明了根矢量系统已完成。最后,在某些关于密度的假设下,我们获得了非现实光谱的外壳,并找到了足够的条件,使得最小的实际部分是真实的非零特征值。后者支持Ben-Ari和Pinsky的猜想,即这种特征值始终是真实的。

We develop a Hilbert-space approach to the diffusion process of the Brownian motion in a bounded domain with random jumps from the boundary introduced by Ben-Ari and Pinsky in 2007. The generator of the process is introduced by a diffusion elliptic differential operator in the space of square-integrable functions, subject to non-self-adjoint and non-local boundary conditions expressed through a probability measure on the domain. We obtain an expression for the difference between the resolvent of the operator and that of its Dirichlet realization. We prove that the numerical range is the whole complex plane, despite the fact that the spectrum is purely discrete and is contained in a half-plane. Furthermore, for the class of absolutely continuous probability measures with square-integrable densities we characterise the adjoint operator and prove that the system of root vectors is complete. Finally, under certain assumptions on the densities, we obtain enclosures for the non-real spectrum and find a sufficient condition for the non-zero eigenvalue with the smallest real part to be real. The latter supports the conjecture of Ben-Ari and Pinsky that this eigenvalue is always real.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源