论文标题

目标传播的理论框架

A Theoretical Framework for Target Propagation

论文作者

Meulemans, Alexander, Carzaniga, Francesco S., Suykens, Johan A. K., Sacramento, João, Grewe, Benjamin F.

论文摘要

深度学习的成功,一种以脑为灵感的AI形式,引发了人们对理解大脑如何在多个神经元中类似学习的兴趣。但是,大多数生物学上的学习算法尚未达到反向传播(BP)的性能,也没有建立在强大的理论基础上。在这里,我们分析了目标传播(TP),这是一种流行但尚未完全理解BP的替代方案,从数学优化的角度来看。我们的理论表明,TP与高斯 - 纽顿优化密切相关,因此与BP有很大不同。此外,我们的分析揭示了差异目标传播(DTP)的基本局限性(DTP)是TP的众所周知变体,在不可变形的神经网络的现实情况下。我们通过新颖的重建损失提供了解决此问题的第一个解决方案,从而改善了反馈的体重训练,同时通过允许从输出到每个隐藏层的直接反馈连接来同时引入建筑灵活性。与DTP相比,我们的理论通过实验结果证实,表现出表现出显着改善的性能和远期重量更新与损耗梯度的一致性。

The success of deep learning, a brain-inspired form of AI, has sparked interest in understanding how the brain could similarly learn across multiple layers of neurons. However, the majority of biologically-plausible learning algorithms have not yet reached the performance of backpropagation (BP), nor are they built on strong theoretical foundations. Here, we analyze target propagation (TP), a popular but not yet fully understood alternative to BP, from the standpoint of mathematical optimization. Our theory shows that TP is closely related to Gauss-Newton optimization and thus substantially differs from BP. Furthermore, our analysis reveals a fundamental limitation of difference target propagation (DTP), a well-known variant of TP, in the realistic scenario of non-invertible neural networks. We provide a first solution to this problem through a novel reconstruction loss that improves feedback weight training, while simultaneously introducing architectural flexibility by allowing for direct feedback connections from the output to each hidden layer. Our theory is corroborated by experimental results that show significant improvements in performance and in the alignment of forward weight updates with loss gradients, compared to DTP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源