论文标题

具有较大变形的灵活机器人的最佳轨迹计划

Optimal Trajectory Planning for Flexible Robots with Large Deformation

论文作者

Edalatzadeh, M. Sajjad

论文摘要

重量较轻的机器人臂可以减少不必要的能源消耗,这在机器人行业中是可取的。但是,轻质臂会经历不良的弹性变形。在本文中,研究了轻质柔性臂的平面运动。为了获得精确的数学模型,考虑了由大弯曲变形引起的柔性臂的轴向位移和非线性曲率。轴向位移是一种不断扩展的条件,与柔性光束的横向位移有关。这导致具有三种刚性模式和一种弹性模式的机器人模型。弹性模式取决于时间和位置。假设模式方法用于删除空间依赖。管理方程是使用Lagrange方法得出的。由于变形,重力和尖端质量较大而导致的非线性项的影响。对照输入包括在滑块和手臂之间的关节上施加的力和力矩(见图1)。常规计算的扭矩控制定律无法稳定系统,因为没有像系统状态那样多的控制输入。然后使用粒子群优化(PSO)技术获得合适的轨迹,以最大程度地减少弹性模式的激发。考虑使用三层人工神经网络(ANN)或使用样条插值来生成轨迹函数的两种方法。提出了滑动模式控制策略,其中滑动表面包括弹性模式以确保稳健性。模拟表明,三层ANN技术提供了任意的小沉降时间,并且优化算法收敛速度更快,并且与样条函数技术不同。

Robot arms with lighter weight can reduce unnecessary energy consumption which is desirable in robotic industry. However, lightweight arms undergo undesirable elastic deformation. In this paper, the planar motion of a lightweight flexible arm is investigated. In order to obtain a precise mathematical model, the axial displacement and nonlinear curvature of flexible arm arising from large bending deformation is taken into consideration. An in-extensional condition, the axial displacement is related to transverse displacement of the flexible beam, is applied. This leads to a robotic model with three rigid modes and one elastic mode. The elastic mode depends on time and position. An Assume Mode Method is used to remove the spatial dependence. The governing equations is derived using Lagrange Method. The effects of nonlinear terms due to the large deformation, gravity, and tip-mass are considered. Control inputs include forces and moment exerted at the joint between slider and arm (see Fig. 1). The conventional computed torque control laws cannot stabilize the system, since there are not as many control inputs as states of the system. A Particle Swarm Optimization (PSO) technique is then used to obtain a suitable trajectory with the aim of minimizing excitations of the elastic mode. Two methods are considered for generating a trajectory function, either to use a three-layer Artificial Neural Network (ANN) or to use spline interpolation. A sliding mode control strategy is proposed in which the sliding surfaces include elastic mode in order to guarantee robustness. The simulations show that the three-layer ANN technique provides arbitrary small settling time, and also the optimization algorithm converges faster and generates smooth trajectories unlike spline function technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源