论文标题

对称性的固有高斯过程及其加速度的对称性

Intrinsic Gaussian Processes on Manifolds and Their Accelerations by Symmetry

论文作者

Ye, Ke, Niu, Mu, Cheung, Pokman, Dai, Zhenwen, Liu, Yuan

论文摘要

在对非参数回归的日益兴趣中,我们解决了应用于基于歧管的预测因子的高斯过程(GP)的重大挑战。现有方法主要集中于低维核心域进行热核估计,从而限制了它们在高维流形中的有效性。我们的研究提出了一种固有的方法,用于在正交群体,单一群体,Stiefel歧管和格拉斯曼尼亚歧管等一般流形上构建GP。我们的方法论通过使用指数图模拟布朗运动样品路径来估算热核,从而确保远离歧管的嵌入。我们的带状算法的引入是针对具有额外对称性的歧管量身定制的,而专为任意流形而设计的球算法构成了我们的重要贡献。通过理论证明和数值测试对两种算法进行了严格的证实,带状算法表现出了与传统方法相比的显着效率提高。这种固有的方法提供了几个关键优势,包括适用于高维歧管,消除了对全局参数化或嵌入的要求。我们通过回归案例研究(圆环结和八个维射击空间)以及开发用于现实世界数据集的二元分类器(大猩猩头骨平面图像和扩散张量图像)来证明其实用性。这些分类器的表现优于传统方法,尤其是在有限的数据方案中。

Amidst the growing interest in nonparametric regression, we address a significant challenge in Gaussian processes(GP) applied to manifold-based predictors. Existing methods primarily focus on low dimensional constrained domains for heat kernel estimation, limiting their effectiveness in higher-dimensional manifolds. Our research proposes an intrinsic approach for constructing GP on general manifolds such as orthogonal groups, unitary groups, Stiefel manifolds and Grassmannian manifolds. Our methodology estimates the heat kernel by simulating Brownian motion sample paths using the exponential map, ensuring independence from the manifold's embedding. The introduction of our strip algorithm, tailored for manifolds with extra symmetries, and the ball algorithm, designed for arbitrary manifolds, constitutes our significant contribution. Both algorithms are rigorously substantiated through theoretical proofs and numerical testing, with the strip algorithm showcasing remarkable efficiency gains over traditional methods. This intrinsic approach delivers several key advantages, including applicability to high dimensional manifolds, eliminating the requirement for global parametrization or embedding. We demonstrate its practicality through regression case studies (torus knots and eight dimensional projective spaces) and by developing binary classifiers for real world datasets (gorilla skulls planar images and diffusion tensor images). These classifiers outperform traditional methods, particularly in limited data scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源