论文标题
多维连续TODA类型系统的粒子状,dyx又固醇和Trix共轴心谎言结构
Particle-like, dyx-coaxial and trix-coaxial Lie algebra structures for a multi-dimensional continuous Toda type system
论文作者
论文摘要
我们证明,使用$(2+1)$ - 尺寸TODA类型系统是相关的代数骨架,它是Dyons和Triadons类型的类似粒子的Lie代数(兼容组装)。我们从某些特定选择的代数骨骼中为系统获得了系统的Trix又二轴和Dyx固定谎言代数结构。特别是,通过绝对并行性的首选,我们与$(2+1)$ - 尺寸TODA类型系统相关联,由两个(兼容的)基本三合会制成的Trix-Coaxial Lie代数结构,构成了$ 2 $ -CATENA。此外,通过绝对平行性的第二选择,我们将由两个(兼容)基础底型牛群制成的dyx又固定谎言结构以及由单个$ 3 $ -DOYON制成的类似粒子的Lie代数结构。解决了一些与特殊解决方案有关的应用程序的明确示例,以及逆光谱问题。
We prove that with a $(2+1)$-dimensional Toda type system are associated algebraic skeletons which are (compatible assemblings) of particle-like Lie algebras of dyons and triadons type. We obtain trix-coaxial and dyx-coaxial Lie algebra structures for the system from algebraic skeletons of some particular choice for compatible associated absolute parallelisms. In particular, by a first choice of the absolute parallelism, we associate with the $(2+1)$-dimensional Toda type system a trix-coaxial Lie algebra structure made of two (compatible) base triadons constituting a $2$-catena. Furthermore, by a second choice of the absolute parallelism, we associate a dyx-coaxial Lie algebra structure made of two (compatible) base dyons, as well as particle-like Lie algebra structures made of single $3$-dyons. Some explicit examples of applications such as conservation laws related to special solutions, and an inverse spectral problem are worked out.