论文标题
扩展在日志平滑品种上的过度授权日志等晶体
On extension of overconvergent log isocrystals on log smooth varieties
论文作者
论文摘要
通过Kedlaya和Shiho的作品,众所周知,在一个积极特征的领域和其简单的正常交叉分数$ z $上,$ \ operline {x} $,在$ z $上的过度转化等速度,以$ z $满足某种单调条件,可以扩展到$ socrystal nlogent in $ socrystal(; \ Mathcal {m} _z \ right)$,其中$ \ Mathcal {M} _z $是与$ z $关联的日志结构。 We prove a generalization of this result: for a log smooth variety $\left(\overline{X},\mathcal{M}\right)$ satisfying some conditions, an overconvergent log isocrystal on the trivial locus of a direct summand of $\mathcal{M}$ satisfying a certain monodromy condition can be extended to a convergent log isocrystal on $ \ left(\ overline {x},\ mathcal {m} \ right)$。
By works of Kedlaya and Shiho, it is known that, for a smooth variety $\overline{X}$ over a field of positive characteristic and its simple normal crossing divisor $Z$, an overconvergent isocrystal on the compliment of $Z$ satisfying a certain monodromy condition can be extended to a convergent log isocrystal on $\left(\overline{X}, \mathcal{M}_Z\right)$, where $\mathcal{M}_Z$ is the log structure associated to $Z$. We prove a generalization of this result: for a log smooth variety $\left(\overline{X},\mathcal{M}\right)$ satisfying some conditions, an overconvergent log isocrystal on the trivial locus of a direct summand of $\mathcal{M}$ satisfying a certain monodromy condition can be extended to a convergent log isocrystal on $\left(\overline{X}, \mathcal{M}\right)$.