论文标题
基于CPHD过滤的分布式多视图多目标跟踪
Distributed multi-view multi-target tracking based on CPHD filtering
论文作者
论文摘要
本文介绍了具有不同视野(FOV)网络的网络上的分布式多目标跟踪(DMTT)。具体而言,基数概率假设密度(CPHD)滤波器在每个传感器节点上运行。由于每个传感器节点的FOV有限,因此通常采用的融合方法变得不可靠。实际上,多个传感器节点的受监视区域由几个部分组成,这些部分不用单个节点,即独家FOV(EFOV)或多个(至少两个)节点(至少两个)节点,即常见FOV(CFOV)。在这种情况下,关键问题是如何在融合规则中考虑这些不同的信息集。当FOV的知识不可靠时,这个问题尤其具有挑战性,例如,由于存在障碍和目标误导,或者FOV时空变化时。考虑到这些问题,我们提出了一种有效的FOV情况下的有效融合算法,其中:i)强度函数通过聚类算法将强度函数分解为多个亚强度/组; ii)通过将目标随机有限集(RFS)近似为多重伯努利(Multi-Bernoulli)来重建相应的基数分布; iii)融合是根据广义协方差相交(GCI)或算术平均(AA)规则并行进行的。提供了模拟实验来证明所提出的方法的有效性。
This paper addresses distributed multi-target tracking (DMTT) over a network of sensors having different fields-of-view (FoVs). Specifically, a cardinality probability hypothesis density (CPHD) filter is run at each sensor node. Due to the fact that each sensor node has a limited FoV, the commonly adopted fusion methods become unreliable. In fact, the monitored area of multiple sensor nodes consists of several parts that are either exclusive of a single node, i.e. exclusive FoVs (eFoVs) or common to multiple (at least two) nodes, i.e. common FoVs (cFoVs). In this setting, the crucial issue is how to account for this different information sets in the fusion rule. The problem is particularly challenging when the knowledge of the FoVs is unreliable, for example because of the presence of obstacles and target misdetection, or when the FoVs are time-varying. Considering these issues, we propose an effective fusion algorithm for the case of unknown FoVs, where: i) the intensity function is decomposed into multiple sub-intensities/groups by means of a clustering algorithm; ii) the corresponding cardinality distribution is reconstructed by approximating the target random finite set (RFS) as multi-Bernoulli; and iii) fusion is performed in parallel according to either generalized covariance intersection (GCI) or arithmetic average (AA) rule. Simulation experiments are provided to demonstrate the effectiveness of the proposed approach.