论文标题

在无限层中,通用Stokes的Resolvent问题的溶液公式和R型结合度具有Neumann边界条件

A solution formula and the R-boundedness for the generalized Stokes resolvent problem in an infinite layer with Neumann boundary condition

论文作者

Oishi, Kenta

论文摘要

我们考虑在具有Neumann边界条件的无限层中的广义stokes解决问题。这个问题是由一个自由边界问题引起的,描述了不可压缩的粘性一相流体流动的运动,而无需表面张力在无限的层中从上方和下方界定自由表面。 We derive a new exact solution formula to the generalized Stokes resolvent problem and prove the $\mathscr{R}$-boundedness of the solution operator families with resolvent parameter $λ$ varying in a sector $Σ_{\varepsilon,γ_0}$ for any $γ_0>0$ and $0<\varepsilon<π/2$, where $σ_ {\ varepsilon,γ_0} = \ {λ\ in \ Mathbb {c} \ setMinus \ {0 \} \ mid | \ mid | \ arm | \gragλ| \leqπ-leqπ-\ lepepsilon,\ varepsilon,\ | c |λ| | | | | | |>γ_0\ \ \} $。作为应用程序,我们获得了最大$ L_P $ - $ L_Q $针对非机构Stokes问题的规律性,然后在上述非线性免费边界问题的本地建立$ L_P $ -L_Q $设置的非线性免费边界问题。我们充分利用解决方案公式来任意使用$γ_0> 0 $,而在一般域中,我们只知道shibata结果$γ_0\ gg1 $的$ \ m varsscr {r} $ - 界。与锡托研究的Neumann-Dirichlet边界条件相比,由于溶液公式中符号的奇异性更高,分析甚至更难。

We consider the generalized Stokes resolvent problem in an infinite layer with Neumann boundary conditions. This problem arises from a free boundary problem describing the motion of incompressible viscous one-phase fluid flow without surface tension in an infinite layer bounded both from above and from below by free surfaces. We derive a new exact solution formula to the generalized Stokes resolvent problem and prove the $\mathscr{R}$-boundedness of the solution operator families with resolvent parameter $λ$ varying in a sector $Σ_{\varepsilon,γ_0}$ for any $γ_0>0$ and $0<\varepsilon<π/2$, where $Σ_{\varepsilon,γ_0} =\{ λ\in\mathbb{C}\setminus\{0\} \mid |\argλ|\leqπ-\varepsilon, \ |λ|>γ_0 \}$. As applications, we obtain the maximal $L_p$-$L_q$ regularity for the nonstationary Stokes problem and then establish the well-posedness locally in time of the nonlinear free boundary problem mentioned above in $L_p$-$L_q$ setting. We make full use of the solution formula to take $γ_0>0$ arbitrarily, while in general domains we only know the $\mathscr{R}$-boundedness for $γ_0\gg1$ from the result by Shibata. As compared with the case of Neumann-Dirichlet boundary condition studied by Saito, analysis is even harder on account of higher singularity of the symbols in the solution formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源