论文标题

用于构建最少弯曲数量的正交平面图的线性时间算法

A linear time algorithm for constructing orthogonal floor plans with minimum number of bends

论文作者

Pinki, Shekhawat, Krishnendra

论文摘要

令G =(v,e)为平面三角图(PTG),每个脸部三角形。 G获得了直向直线双双或正交平面图(OFP),可以通过将矩形划分为\中V \中部直线区域(模块),仅当两个模块之间存在两个模块时,只有当在本文中构建了一个线性gor的g,仅当在本文中构建了一个构建的g。 b_ {min}弯曲,其中一个在OFP的凹角处的弯曲。此外,已经证明,至少需要b_ {min}弯曲才能为g构造ofp,其中ρ-2 \ leq b_ {min} \ leqρ+ 1且G. g。

Let G = (V, E) be a planar triangulated graph (PTG) having every face triangular. A rectilinear dual or an orthogonal floor plan (OFP) of G is obtained by partitioning a rectangle into \mid V \mid rectilinear regions (modules) where two modules are adjacent if and only if there is an edge between the corresponding vertices in G. In this paper, a linear-time algorithm is presented for constructing an OFP for a given G such that the obtained OFP has B_{min} bends, where a bend in a concave corner in an OFP. Further, it has been proved that at least B_{min} bends are required to construct an OFP for G, where ρ- 2 \leq B_{min} \leq ρ+ 1 and ρis the sum of the number of leaves of the containment tree of G and the number of K_4 (4-vertex complete graph) in G.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源