论文标题

商业建筑中HVAC控制的多代理深钢筋学习

Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings

论文作者

Yu, Liang, Sun, Yi, Xu, Zhanbo, Shen, Chao, Yue, Dong, Jiang, Tao, Guan, Xiaohong

论文摘要

在商业建筑中,约有40%-50%的总消耗量归因于供暖,通风和空调(HVAC)系统,这给建筑运营商带来了经济负担。在本文中,我们打算在动态定价下的多区域商业建筑中最大程度地减少HVAC系统的能源成本,考虑到随机区域占用,热舒适和室内空气质量舒适度。由于存在未知的热动力学模型,参数不确定性(例如,室外温度,电价和乘员数量),与室内温度和CO2浓度相关的空间和时间耦合约束,较大的离散解决方案空间以及非分数和非分离的目标功能,这是非常挑战的。为此,上述能源成本最小化的问题被重新归类为马尔可夫游戏。然后,提出了HVAC控制算法,以通过注意机制基于多代理深入学习来解决马尔可夫游戏。所提出的算法不需要任何不确定参数的先验知识,并且可以在不知道构建热力学模型的情况下运行。基于实际痕迹的仿真结果显示了所提出算法的有效性,鲁棒性和可扩展性。

In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. In this paper, we intend to minimize the energy cost of an HVAC system in a multi-zone commercial building under dynamic pricing with the consideration of random zone occupancy, thermal comfort, and indoor air quality comfort. Due to the existence of unknown thermal dynamics models, parameter uncertainties (e.g., outdoor temperature, electricity price, and number of occupants), spatially and temporally coupled constraints associated with indoor temperature and CO2 concentration, a large discrete solution space, and a non-convex and non-separable objective function, it is very challenging to achieve the above aim. To this end, the above energy cost minimization problem is reformulated as a Markov game. Then, an HVAC control algorithm is proposed to solve the Markov game based on multi-agent deep reinforcement learning with attention mechanism. The proposed algorithm does not require any prior knowledge of uncertain parameters and can operate without knowing building thermal dynamics models. Simulation results based on real-world traces show the effectiveness, robustness and scalability of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源