论文标题

AutoCP:自动化管道,用于准确的预测间隔

AutoCP: Automated Pipelines for Accurate Prediction Intervals

论文作者

Zhang, Yao, Zame, William, van der Schaar, Mihaela

论文摘要

成功地应用机器学习模型到现实世界的预测问题,例如事实证明,财务预测和个性化医学是充满挑战的,因为这样的环境需要限制和量化模型预测中的不确定性,即提供有效,准确的预测间隔。共形预测是在有限样本中构建有效预测间隔的一种无分布方法。但是,通过共形预测构建的预测间隔通常(由于过度合适,不合适的衡量标准或其他问题)过于保守,因此当前的应用程序不足。本文提出了一个称为共形预测的自动机器学习(AUTOCP)的自动框架。与尝试选择最佳预测模型的熟悉的自动框架不同,AutoCP构造了预测间隔,以实现用户指定的目标覆盖率,同时优化间隔长度以确保准确且不太保守。我们在各种数据集上测试了AutOCP,发现它的表现明显优于基准算法。

Successful application of machine learning models to real-world prediction problems, e.g. financial forecasting and personalized medicine, has proved to be challenging, because such settings require limiting and quantifying the uncertainty in the model predictions, i.e. providing valid and accurate prediction intervals. Conformal Prediction is a distribution-free approach to construct valid prediction intervals in finite samples. However, the prediction intervals constructed by Conformal Prediction are often (because of over-fitting, inappropriate measures of nonconformity, or other issues) overly conservative and hence inadequate for the application(s) at hand. This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP). Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate while optimizing the interval length to be accurate and less conservative. We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源