论文标题
使用Spitzer IRAC应用于高精度光度法分析的随机森林
Random Forests applied to High Precision Photometry Analysis with Spitzer IRAC
论文作者
论文摘要
我们提出了一种采用机器学习技术来测量天体物理特征的新方法,该方法通过使用随机森林纠正IRAC高精度光度法。 IRAC光曲线数据中的主要系统性是由于不可避免的望远镜运动以及iNterexel响应函数而导致的位置变化。我们的目标是使用用于此类工作的单像素(甜点像素)的大量公开校准数据,以快速,易于使用,准确地校正科学数据。对校准数据的纠正具有使用独立数据集而不是使用本身的科学数据的优点,而科学数据的缺点是包括天体物理变化。在专注于功能工程和超参数优化之后,我们表明,增强的随机森林模型可以减少数据,以便我们测量XO-3B的十个档案日食观测值的中位数为1459 +-200份百万分之200。这与通过七种不同方法完成的文献中的平均值相当的深度,但是根据还原方法,测量中的传播比那些文献值大30-100%。我们还警告其他尝试使用类似方法来检查其结果的其他人使用XO-3B的基准数据集检查结果,因为我们还能够找到在其内部测试数据集中提供最初得分的模型,但其结果大大低估了该星球的日食深度。
We present a new method employing machine learning techniques for measuring astrophysical features by correcting systematics in IRAC high precision photometry using Random Forests. The main systematic in IRAC light curve data is position changes due to unavoidable telescope motions coupled with an intrapixel response function. We aim to use the large amount of publicly available calibration data for the single pixel used for this type of work (the sweet spot pixel) to make a fast, easy to use, accurate correction to science data. This correction on calibration data has the advantage of using an independent dataset instead of using the science data on itself, which has the disadvantage of including astrophysical variations. After focusing on feature engineering and hyperparameter optimization, we show that a boosted random forest model can reduce the data such that we measure the median of ten archival eclipse observations of XO-3b to be 1459 +- 200 parts per million. This is a comparable depth to the average of those in the literature done by seven different methods, however the spread in measurements is 30-100% larger than those literature values, depending on the reduction method. We also caution others attempting similar methods to check their results with the fiducial dataset of XO-3b as we were also able to find models providing initially great scores on their internal test datasets but whose results significantly underestimated the eclipse depth of that planet.