论文标题

当q^{ - 1}> 1时,真流式巴尔格曼的Q变形会转换

A q deformation of true-polyanalytic Bargmann transforms when q^{-1}> 1

论文作者

moize, Othmane El, Mouayn, Zouhair

论文摘要

我们将连续的$ q^{ - 1} $ - Hermite ASKEY多项式与Ismail和Zhang引入的新$ 2D $正交多项式作为$ Q $ -Analogs,用于复杂的HERMITE多项式,以构建一套新的相干状态,这些状态取决于非智力integer integer integer integer参数。在与$ m = 0 $相对应的分析案例中,我们以$ q'= q'= q'= q^{ - 1}> 1 $恢复了已知结果 过程。

We combine continuous $q^{-1}$-Hermite Askey polynomials with new $2D$ orthogonal polynomials introduced by Ismail and Zhang as $q$-analogs for complex Hermite polynomials to construct a new set of coherent states depending on a nonnegative integer parameter $m$. In the analytic case corresponding to $m=0$, we recover a known result on the Ar\"ık-Coon oscillator for $q'=q^{-1}>1$. Our construction leads to a new $q$-deformation of the $m$-true-polyanalytic Bargmann transform on the complex plane. The obtained result may be used to introduce a $q$-deformed Ginibre-type point process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源