论文标题
应变工程拓扑型II DIRAC半学nite $ _2 $
Strain-engineering the topological type-II Dirac semimetal NiTe$_2$
论文作者
论文摘要
在目前的工作中,我们使用密度函数理论(DFT)研究了平衡中的电子和弹性特性。我们的结果证明了Dirac节点的能量和动量与应变的可调节性,并且可以使它们更接近费米水平,而其他金属频带则被抑制。我们还为狄拉克锥(Dirac Cones)得出了最小的4波段有效模型,该模型通过晶格正则化来解释上述应变效应,从而为进一步的理论研究提供了一种廉价的方式,并与实验易于比较。在平等的基础上,我们提出了通过将碱物种插入范德华间隙的静态控制,从而产生了通过应变工程和消除原位菌株的需求而获得的相同效果。最后,评估波函数的对称演变随着晶格的变形而讨论可能的后果,例如LiftShitz过渡以及I型I型和II类型DIRAC锥的共存,从而激发了未来的研究。
In the present work, we investigated the electronic and elastic properties in equilibrium and under strain of the type-II Dirac semimetal NiTe$_2$ using density functional theory (DFT). Our results demonstrate the tunability of Dirac nodes' energy and momentum with strain and that it is possible to bring them closer to the Fermi level, while other metallic bands are supressed. We also derive a minimal 4-band effective model for the Dirac cones which accounts for the aforementioned strain effects by means of lattice regularization, providing an inexpensive way for further theoretical investigations and easy comparison with experiments. On an equal footing, we propose the static control of the electronic structure by intercalating alkali species into the van der Waals gap, resulting in the same effects obtained by strain-engineering and removing the requirement of in situ strain. Finally, evaluating the wavefunction's symmetry evolution as the lattice is deformed, we discuss possible consequences, such as Liftshitz transitions and the coexistence of type-I and type-II Dirac cones, thus motivating future investigations.