论文标题

流体结构相互作用中的网格变形技术:鲁棒性,累积失真和计算效率

Mesh deformation techniques in fluid-structure interaction: robustness, accumulated distortion and computational efficiency

论文作者

Shamanskiy, Alexander, Simeon, Bernd

论文摘要

用于流体结构相互作用(FSI)问题的任何移动网格方法的重要成分是用于适应移动流体域中计算网格的网格变形技术(MDT)。理想的技术在计算上是便宜的,可以处理大型网格变形而无需颠倒网格元素,并且可以在很长的时间内维持FSI模拟,而不会不可逆地扭曲网格。在这里,我们根据基于线性弹性方程的谐波扩展,双谐波扩展和技术,比较了几种常用技术,包括谐波扩展,双谐波扩展和技术。此外,我们提出了一种新颖的技术,该技术利用从持续方法中的思想来有效地求解非线性弹性的方程,即使网格遭受极端变形,也证明是健壮的。除此之外,我们研究每种技术与基于雅各布的局部僵化结合时的性能。我们通过使用具有强耦合的同几何分区求解器来重现流行的二维FSI基准测试。

An important ingredient of any moving-mesh method for fluid-structure interaction (FSI) problems is the mesh deformation technique (MDT) used to adapt the computational mesh in the moving fluid domain. An ideal technique is computationally inexpensive, can handle large mesh deformations without inverting mesh elements and can sustain an FSI simulation for extensive periods ot time without irreversibly distorting the mesh. Here we compare several commonly used techniques based on the solution of elliptic partial differential equations, including harmonic extension, bi-harmonic extension and techniques based on the equations of linear elasticity. Moreover, we propose a novel technique which utilizes ideas from continuation methods to efficiently solve the equations of nonlinear elasticity and proves to be robust even when the mesh is subject to extreme deformations. In addition to that, we study how each technique performs when combined with the Jacobian-based local stiffening. We evaluate each technique on a popular two-dimensional FSI benchmark reproduced by using an isogeometric partitioned solver with strong coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源