论文标题

基于水平集的扩展有限元建模在吸湿性肿胀下的纤维网络响应

Level set based eXtended finite element modelling of the response of fibrous networks under hygroscopic swelling

论文作者

Samantray, P., Peerlings, R. H. J., Bosco, E., Geers, M. G. D., Massart, T. J., Rokoš, O.

论文摘要

像纸这样的材料,由天然纤维网络组成,暴露于水分的变化,发生了几何和机械性能的变化。这种行为对于理解纸张在数字印刷等应用中的卫生机械响应尤其重要。因此,开发了纤维网络的二维微观结构模型,以通过相互作用的相互作用将单个纤维的透明度扩展到产生的网络的总体扩展。纤维以矩形形状进行建模,并假定在重叠的地方完全粘结。对于现实的网络,债券的数量很大,网络在几何上是如此复杂,以使其通过常规的,几何形状的,有限的元素来离散,这很麻烦。水平集和XFEM形式主义的组合可以使用常规的结构化网格,以对复杂的微观结构几何形状进行建模。在这种方法中,纤维是通过级别集合函数隐式描述的。为了表示纤维网络中的光纤边界,将XFEM离散化与Heaviside富集函数一起使用。数值结果表明,与经典FEM相比,所提出的方法成功地捕获了网络的卫生表达特性,自由度较少,从而确保了所需的准确性。

Materials like paper, consisting of a network of natural fibres, exposed to variations in moisture, undergo changes in geometrical and mechanical properties. This behaviour is particularly important for understanding the hygro-mechanical response of sheets of paper in applications like digital printing. A two-dimensional microstructural model of a fibrous network is therefore developed to upscale the hygro-expansion of individual fibres, through their interaction, to the resulting overall expansion of the network. The fibres are modelled with rectangular shapes and are assumed to be perfectly bonded where they overlap. For realistic networks the number of bonds is large and the network is geometrically so complex that discretizing it by conventional, geometry-conforming, finite elements is cumbersome. The combination of a level-set and XFEM formalism enables the use of regular, structured grids in order to model the complex microstructural geometry. In this approach, the fibres are described implicitly by a level-set function. In order to represent the fibre boundaries in the fibrous network, an XFEM discretization is used together with a Heaviside enrichment function. Numerical results demonstrate that the proposed approach successfully captures the hygro-expansive properties of the network with fewer degrees of freedom compared to classical FEM, preserving desired accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源