论文标题
铺路属性,用于真正的稳定多项式和强烈的瑞利工艺
Paving Property for Real Stable Polynomials and Strongly Rayleigh Processes
论文作者
论文摘要
卡迪森(Kadison)问题的同等表述之一是马库斯(Marcus),斯皮尔曼(Spielman)和斯里瓦斯塔瓦(Srivastava)在2013年解决的,是“铺路猜想”。粗略地说,铺路猜想指出,每种带有小的对角条目的正阳性收缩都可以被少数具有小型操作员规范的主要一质量“铺路”。我们将此结果扩展到实际稳定的多项式。我们将证明,假设在多种元素稳定多项式的领先系数上进行温和条件,则可以将一组变量划分为少数子集,以便多项式的“限制”的根部到每个组变量的“限制”。 我们将使用此广义铺路定理来表明,对于每个强烈的雷利点过程,可以将基础空间划分为少数子集,以使点过程对每个子集的限制的点“弱相关”。该结果具有直觉上的吸引力,因为它暗示了负面依赖的点过程中的排斥力在任何地方都不能强大。为了证明这一结果,我们将引入内核多项式的概念,以实现强烈的瑞利过程。这个概念是对确定过程内核概念的概括,并提供了研究这两个点过程家族的统一框架。我们还将证明,就内核多项式的根而言,强烈的雷利过程的熵较低。
One of the equivalent formulations of the Kadison-Singer problem which was resolved in 2013 by Marcus, Spielman and Srivastava, is the "paving conjecture". Roughly speaking, the paving conjecture states that every positive semi-definite contraction with small diagonal entries can be "paved" by a small number of principal submatrices with small operator norms. We extend this result to real stable polynomials. We will prove that assuming mild conditions on the leading coefficients of a multi-affine real stable polynomial, it is possible to partition the set of variables to a small number of subsets such that the roots of the "restrictions" of the polynomial to each set of variables are small. We will use this generalized paving theorem to show that for every strongly Rayleigh point process, it is possible to partition the underlying space into a small number of subsets such that the points of the restrictions of the point process to each subset are "weakly correlated". This result is intuitively appealing since it implies that the repulsive force among the points of a negatively dependent point process cannot be strong everywhere. To prove this result, we will introduce the notion of the kernel polynomial for strongly Rayleigh processes. This notion is a generalization of the notion of the kernel of determinantal processes and provides a unified framework for studying these two families of point processes. We will also prove an entropy lower for strongly Rayleigh processes in terms of the roots of the kernel polynomial.