论文标题

全球敏感性和域选择性测试对功能值的响应:气候经济模型的应用

Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models

论文作者

Fontana, Matteo, Tavoni, Massimo, Vantini, Simone

论文摘要

了解气候变化和相关不确定性的动态和演变是设计强大的政策行动的关键。计算机模型是这项科学工作中的关键工具,现在已经达到了高度的复杂性和复杂性。为了更好地理解其结果,需要模型审核,并处理此类模型在其内部运作方面越来越不透明。当前的全局灵敏度分析(GSA)等当前技术仅限于处理多元输出,随机输出或有限变化输入。这将它们的适用性限制为随着时变的变量,例如温室气体的未来途径。为了在模型集合的分析中提供其他语义,我们提供了GSA方法的扩展,该方法可以解决具有有限变化输入的随机功能输出的情况。为了处理有限的变化输入和功能输出,我们提出了当前可用的GSA方法的扩展,同时我们通过引入一种新颖的,域的选择性推论技术来处理随机部分,以实现灵敏度指数。我们的方法是通过模拟研究探索的,该研究表明其在检测灵敏度模式中的鲁棒性和功效。我们将其应用于现实世界中的数据,在该数据中,其功能可以为从业者和政策制定者提供有关灵敏度模式的时间动态的其他信息,以及有关鲁棒性的信息。

Understanding the dynamics and evolution of climate change and associated uncertainties is key for designing robust policy actions. Computer models are key tools in this scientific effort, which have now reached a high level of sophistication and complexity. Model auditing is needed in order to better understand their results, and to deal with the fact that such models are increasingly opaque with respect to their inner workings. Current techniques such as Global Sensitivity Analysis (GSA) are limited to dealing either with multivariate outputs, stochastic ones, or finite-change inputs. This limits their applicability to time-varying variables such as future pathways of greenhouse gases. To provide additional semantics in the analysis of a model ensemble, we provide an extension of GSA methodologies tackling the case of stochastic functional outputs with finite change inputs. To deal with finite change inputs and functional outputs, we propose an extension of currently available GSA methodologies while we deal with the stochastic part by introducing a novel, domain-selective inferential technique for sensitivity indices. Our method is explored via a simulation study that shows its robustness and efficacy in detecting sensitivity patterns. We apply it to real world data, where its capabilities can provide to practitioners and policymakers additional information about the time dynamics of sensitivity patterns, as well as information about robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源