论文标题

作物产生预测,使用深度学习整合基因型和天气变量

Crop Yield Prediction Integrating Genotype and Weather Variables Using Deep Learning

论文作者

Shook, Johnathon, Gangopadhyay, Tryambak, Wu, Linjiang, Ganapathysubramanian, Baskar, Sarkar, Soumik, Singh, Asheesh K.

论文摘要

准确预测与科学和领域相关的见解支持的作物产量,可以帮助改善农业育种,为各种气候条件提供监测,从而防止农作物生产的气候挑战,包括不稳定的降雨和温度变化。我们使用了13年数据的北美统一大豆测试(UST)的历史性能记录,以建立长期记忆 - 基于神经网络的长期记忆模型,通过利用谱系相关性测量和每周天气参数来剖析和预测多种环境中的基因型响应。此外,为了在生长季节提供重要的时源性解释性,我们开发了一种基于时间注意机制的模型。这两个模型的组合优于随机森林(RF),套索回归和数据驱动的USDA模型用于产量预测。我们将这个深度学习框架部署为“假设生成工具”来揭示GXEXM关系。基于注意力的时间序列模型在产量预测模型的解释性方面提供了重大进步。可解释的模型提供的见解适用于了解植物育种计划如何适应其方法以适应全球气候变化的方法,例如鉴定商业释放的优质品种,对品种开发中测试环境的智能采样以及为目标繁殖方法整合天气参数。使用DL模型作为假设生成工具将使在可变气候条件下具有可塑性响应的品种开发。我们设想这种方法在不同气候条件下对大豆和其他作物物种的这种方法的广泛适用性(通过进行灵敏度分析和“何种情况”场景)。

Accurate prediction of crop yield supported by scientific and domain-relevant insights, can help improve agricultural breeding, provide monitoring across diverse climatic conditions and thereby protect against climatic challenges to crop production including erratic rainfall and temperature variations. We used historical performance records from Uniform Soybean Tests (UST) in North America spanning 13 years of data to build a Long Short Term Memory - Recurrent Neural Network based model to dissect and predict genotype response in multiple-environments by leveraging pedigree relatedness measures along with weekly weather parameters. Additionally, for providing explainability of the important time-windows in the growing season, we developed a model based on temporal attention mechanism. The combination of these two models outperformed random forest (RF), LASSO regression and the data-driven USDA model for yield prediction. We deployed this deep learning framework as a 'hypotheses generation tool' to unravel GxExM relationships. Attention-based time series models provide a significant advancement in interpretability of yield prediction models. The insights provided by explainable models are applicable in understanding how plant breeding programs can adapt their approaches for global climate change, for example identification of superior varieties for commercial release, intelligent sampling of testing environments in variety development, and integrating weather parameters for a targeted breeding approach. Using DL models as hypothesis generation tools will enable development of varieties with plasticity response in variable climatic conditions. We envision broad applicability of this approach (via conducting sensitivity analysis and "what-if" scenarios) for soybean and other crop species under different climatic conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源