论文标题

四环散射幅度向树木的普遍开放

Universal opening of four-loop scattering amplitudes to trees

论文作者

Ramirez-Uribe, Selomit, Hernandez-Pinto, Roger J., Rodrigo, German, Sborlini, German F. R., Bobadilla, William J. Torres

论文摘要

量子场理论的扰动方法使得在高能量物理学中获得难以置信的准确的理论预测成为可能。尽管已经开发了各种技术来提高这些计算的效率,但某些成分仍然特别具有挑战性。多旋转散射幅度构成了要解决的硬瓶颈的情况。在本文中,我们根据Loop-Tree二元定理深入研究了颠覆性技术的应用,该技术的目的是通过向Nondischanceent树打开循环来有效地计算此类对象。我们研究了首先以四个循环出现的多端拓扑结构,并以巧妙而通用的表达组装,即n $^4 $ mlt {\ it commission topology}。该一般表达式使得最多可以打开最多四个循环的任何散射幅度,并描述了所有订单的高阶配置子集。这些结果证实了以简单的已知子接头的分解开口的猜想,这也确定了整个环路振幅的因果结构的特征是其子流行病的因果结构的特征。此外,我们确认n $^4 $ mlt通用拓扑的环路二元表示显然没有非质量阈值,因此指出了多旋转散射振幅的更稳定的数值实现。

The perturbative approach to quantum field theories has made it possible to obtain incredibly accurate theoretical predictions in high-energy physics. Although various techniques have been developed to boost the efficiency of these calculations, some ingredients remain specially challenging. This is the case of multiloop scattering amplitudes that constitute a hard bottleneck to solve. In this paper, we delve into the application of a disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient computation of such objects by opening the loops to nondisjoint trees. We study the multiloop topologies that first appear at four loops and assemble them in a clever and general expression, the N$^4$MLT {\it universal topology}. This general expression enables to open any scattering amplitude of up to four loops, and also describes a subset of higher order configurations to all orders. These results confirm the conjecture of a factorized opening in terms of simpler known subtopologies, which also determines how the causal structure of the entire loop amplitude is characterized by the causal structure of its subtopologies. In addition, we confirm that the loop-tree duality representation of the N$^4$MLT universal topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably more stable numerical implementation of multiloop scattering amplitudes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源