论文标题
非线性激光模型中的同型拼图和混乱
Homoclinic puzzles and chaos in a nonlinear laser model
论文作者
论文摘要
我们提出了一项案例研究,该案例研究详细介绍了具有Lorenz样混合吸引子的非线性激光模型的2D和3D参数空间中同质和异斜分叉结构的多样性和自相似性。 In a symbiotic approach combining the traditional parameter continuation methods using MatCont and a newly developed technique called the Deterministic Chaos Prospector (DCP) utilizing symbolic dynamics on fast parallel computing hardware with graphics processing units (GPUs), we exhibit how specific codimension-two bifurcations originate and pattern regions of chaotic and simple dynamics in this classical model.我们显示了关键分叉结构的详细计算重建,例如2D参数空间中的bykov t点螺旋和倾斜度翻转,以及空间组织和分叉表面的3D嵌入,参数鞍座和隔离的封闭曲线(隔离曲线)(隔离)。
We present a case study elaborating on the multiplicity and self-similarity of homoclinic and heteroclinic bifurcation structures in the 2D and 3D parameter spaces of a nonlinear laser model with a Lorenz-like chaotic attractor. In a symbiotic approach combining the traditional parameter continuation methods using MatCont and a newly developed technique called the Deterministic Chaos Prospector (DCP) utilizing symbolic dynamics on fast parallel computing hardware with graphics processing units (GPUs), we exhibit how specific codimension-two bifurcations originate and pattern regions of chaotic and simple dynamics in this classical model. We show detailed computational reconstructions of key bifurcation structures such as Bykov T-point spirals and inclination flips in 2D parameter space, as well as the spatial organization and 3D embedding of bifurcation surfaces, parametric saddles, and isolated closed curves (isolas).