论文标题

非线性激光模型中的同型拼图和混乱

Homoclinic puzzles and chaos in a nonlinear laser model

论文作者

Pusuluri, K., Meijer, H. G. E., Shilnikov, A. L.

论文摘要

我们提出了一项案例研究,该案例研究详细介绍了具有Lorenz样混合吸引子的非线性激光模型的2D和3D参数空间中同质和异斜分叉结构的多样性和自相似性。 In a symbiotic approach combining the traditional parameter continuation methods using MatCont and a newly developed technique called the Deterministic Chaos Prospector (DCP) utilizing symbolic dynamics on fast parallel computing hardware with graphics processing units (GPUs), we exhibit how specific codimension-two bifurcations originate and pattern regions of chaotic and simple dynamics in this classical model.我们显示了关键分叉结构的详细计算重建,例如2D参数空间中的bykov t点螺旋和倾斜度翻转,以及空间组织和分叉表面的3D嵌入,参数鞍座和隔离的封闭曲线(隔离曲线)(隔离)。

We present a case study elaborating on the multiplicity and self-similarity of homoclinic and heteroclinic bifurcation structures in the 2D and 3D parameter spaces of a nonlinear laser model with a Lorenz-like chaotic attractor. In a symbiotic approach combining the traditional parameter continuation methods using MatCont and a newly developed technique called the Deterministic Chaos Prospector (DCP) utilizing symbolic dynamics on fast parallel computing hardware with graphics processing units (GPUs), we exhibit how specific codimension-two bifurcations originate and pattern regions of chaotic and simple dynamics in this classical model. We show detailed computational reconstructions of key bifurcation structures such as Bykov T-point spirals and inclination flips in 2D parameter space, as well as the spatial organization and 3D embedding of bifurcation surfaces, parametric saddles, and isolated closed curves (isolas).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源