论文标题

后直播:通过与Denoing AutoCododer进行后处理,解剖学上的分割

Post-DAE: Anatomically Plausible Segmentation via Post-Processing with Denoising Autoencoders

论文作者

Larrazabal, Agostina J, Martínez, César, Glocker, Ben, Ferrante, Enzo

论文摘要

我们介绍了DAE,这是一种基于denoising自动编码器(DAE)的后处理方法,以提高任意生物医学图像分割算法的解剖学合理性。一些最受欢迎的分割方法(例如,基于卷积神经网络或随机森林分类器)结合了其他后处理步骤,以确保所得的掩码满足预期的连接性约束。这些方法在以下假设下运行,即具有相似方面的连续像素应属于同一类。即使通常有效,此假设也不考虑更复杂的先验,例如拓扑限制或凸度,而这些限制不容易被纳入这些方法。 DAE通过Denoising AutoCoders利用了多种学习的最新发展。首先,我们学习一个紧凑而非线性的嵌入,代表解剖学上合理的分割空间。然后,给定使用任意方法获得的分割掩码,我们通过将其投影到学习的歧管上来重建其解剖上合理的版本。提出的方法是使用未配对的分割面罩训练的,这使其与强度信息和图像模式无关。我们在胸部X射线和心脏磁共振图像的二元和多标签分割中进行了实验。我们展示了如何使用后-DAE改善错误和嘈杂的分割面罩。几乎没有额外的计算成本,我们的方法将错误的分割带回了可行的空间。

We introduce Post-DAE, a post-processing method based on denoising autoencoders (DAE) to improve the anatomical plausibility of arbitrary biomedical image segmentation algorithms. Some of the most popular segmentation methods (e.g. based on convolutional neural networks or random forest classifiers) incorporate additional post-processing steps to ensure that the resulting masks fulfill expected connectivity constraints. These methods operate under the hypothesis that contiguous pixels with similar aspect should belong to the same class. Even if valid in general, this assumption does not consider more complex priors like topological restrictions or convexity, which cannot be easily incorporated into these methods. Post-DAE leverages the latest developments in manifold learning via denoising autoencoders. First, we learn a compact and non-linear embedding that represents the space of anatomically plausible segmentations. Then, given a segmentation mask obtained with an arbitrary method, we reconstruct its anatomically plausible version by projecting it onto the learnt manifold. The proposed method is trained using unpaired segmentation mask, what makes it independent of intensity information and image modality. We performed experiments in binary and multi-label segmentation of chest X-ray and cardiac magnetic resonance images. We show how erroneous and noisy segmentation masks can be improved using Post-DAE. With almost no additional computation cost, our method brings erroneous segmentations back to a feasible space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源