论文标题

FBK-HUPBA提交给Epic-Kitchens Action识别2020挑战

FBK-HUPBA Submission to the EPIC-Kitchens Action Recognition 2020 Challenge

论文作者

Sudhakaran, Swathikiran, Escalera, Sergio, Lanz, Oswald

论文摘要

在本报告中,我们描述了我们提交给Epic-Kitchens Action Denciention 2020挑战的技术细节。为了参与挑战,我们部署了我们最近开发的时空特征提取和聚合模型:GATE-SHIFT模块(GSM)[1]和Egoaco,《长期短期关注》(LSTA)的扩展[2]。我们设计了具有不同骨架和预训练的GSM和Egoaco模型家族的合奏,以产生预测分数。我们的提交内容在公众排行榜上使用Team Name FBK-Hupba可见,在S1设置上获得了40.0%的前1个动作识别精度,仅使用RGB,在S2设置上获得了25.71%的识别精度。

In this report we describe the technical details of our submission to the EPIC-Kitchens Action Recognition 2020 Challenge. To participate in the challenge we deployed spatio-temporal feature extraction and aggregation models we have developed recently: Gate-Shift Module (GSM) [1] and EgoACO, an extension of Long Short-Term Attention (LSTA) [2]. We design an ensemble of GSM and EgoACO model families with different backbones and pre-training to generate the prediction scores. Our submission, visible on the public leaderboard with team name FBK-HUPBA, achieved a top-1 action recognition accuracy of 40.0% on S1 setting, and 25.71% on S2 setting, using only RGB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源