论文标题

使用不同的回归模型,用于复杂流问题

Standardized Non-Intrusive Reduced Order Modeling Using Different Regression Models With Application to Complex Flow Problems

论文作者

Bērziņš, Artūrs, Helmig, Jan, Key, Fabian, Elgeti, Stefanie

论文摘要

近年来,工业应用中的数值方法已从纯预测工具发展为一种优化和控制的手段。由于标准数值分析方法在此类多Query设置中变得昂贵,因此已推进了各种降低的订单建模(ROM)方法。在这种情况下,这项工作的驱动应用是双螺钉挤出机(TSE):在塑料处理中具有重要经济作用的制造设备。对通过TSE的流动进行建模需要非线性材料模型,并与复杂的网格变形与热方程式结合,这是一个相对复杂的情况。我们研究了如何为此应用构建非侵入性数据驱动的ROM。我们专注于具有回归的良好合适的正交分解(POD),尽管我们引入了两种适应:标准化数据和误差度量以及受我们的时空仿真的启发 - 将时间视为离散坐标,而不是连续参数。我们表明,这些步骤使POD回归框架更加可解释,在计算上有效且无关紧要。我们继续比较三种不同回归模型的性能:径向基函数(RBF)回归,高斯过程回归(GPR)和人工神经网络(ANN)。我们发现GPR与ANN具有多个优势,构成了可行且计算上的廉价无侵入性ROM。此外,该框架是开源的,可以作为其他从业者的起点,并促进在通用工程工作流程中使用ROM。

In recent years, numerical methods in industrial applications have evolved from a pure predictive tool towards a means for optimization and control. Since standard numerical analysis methods have become prohibitively costly in such multi-query settings, a variety of reduced order modeling (ROM) approaches have been advanced towards complex applications. In this context, the driving application for this work is twin-screw extruders (TSEs): manufacturing devices with an important economic role in plastics processing. Modeling the flow through a TSE requires non-linear material models and coupling with the heat equation alongside intricate mesh deformations, which is a comparatively complex scenario. We investigate how a non-intrusive, data-driven ROM can be constructed for this application. We focus on the well-established proper orthogonal decomposition (POD) with regression albeit we introduce two adaptations: standardizing both the data and the error measures as well as -- inspired by our space-time simulations -- treating time as a discrete coordinate rather than a continuous parameter. We show that these steps make the POD-regression framework more interpretable, computationally efficient, and problem-independent. We proceed to compare the performance of three different regression models: Radial basis function (RBF) regression, Gaussian process regression (GPR), and artificial neural networks (ANNs). We find that GPR offers several advantages over an ANN, constituting a viable and computationally inexpensive non-intrusive ROM. Additionally, the framework is open-sourced to serve as a starting point for other practitioners and facilitate the use of ROM in general engineering workflows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源