论文标题
功能网络模型的贝叶斯收缩,并应用于纵向项目响应数据
Bayesian Shrinkage for Functional Network Models, with Applications to Longitudinal Item Response Data
论文作者
论文摘要
纵向项目响应数据在社会科学,教育科学和心理学等学科中很常见。研究项目之间的随时间变化关系对于教育评估或从调查问题设计营销策略至关重要。尽管动态网络模型已经广泛开发,但我们不能将它们直接应用于项目响应数据,因为有多种节点系统具有各种类型的局部交互,从而产生了多重网络结构。我们提出了一个新模型,通过将功能参数嵌入指数随机图模型框架中,以研究项目之间的这些时间相互作用。这种模型的推断很困难,因为可能性函数包含棘手的归一化常数。此外,随着项目数量的增加,功能参数的数量呈指数增长。对于此类模型的可变选择并不是微不足道的,因为标准收缩方法不考虑功能参数的时间趋势。为了克服这些挑战,我们通过结合辅助变量MCMC算法和最近开发的功能收缩方法来开发一种新颖的贝叶斯方法。我们将算法应用于调查和审查数据集,这说明所提出的方法可以避免评估棘手的归一化常数以及检测项目之间的显着时间相互作用。通过在不同情况下的模拟研究,我们研究了算法的性能。据我们所知,我们的方法是为具有棘手的归一化常数模型选择功能变量的首次尝试。
Longitudinal item response data are common in social science, educational science, and psychology, among other disciplines. Studying the time-varying relationships between items is crucial for educational assessment or designing marketing strategies from survey questions. Although dynamic network models have been widely developed, we cannot apply them directly to item response data because there are multiple systems of nodes with various types of local interactions among items, resulting in multiplex network structures. We propose a new model to study these temporal interactions among items by embedding the functional parameters within the exponential random graph model framework. Inference on such models is difficult because the likelihood functions contain intractable normalizing constants. Furthermore, the number of functional parameters grows exponentially as the number of items increases. Variable selection for such models is not trivial because standard shrinkage approaches do not consider temporal trends in functional parameters. To overcome these challenges, we develop a novel Bayes approach by combining an auxiliary variable MCMC algorithm and a recently-developed functional shrinkage method. We apply our algorithm to survey and review data sets, illustrating that the proposed approach can avoid the evaluation of intractable normalizing constants as well as the detection of significant temporal interactions among items. Through a simulation study under different scenarios, we examine the performance of our algorithm. Our method is, to our knowledge, the first attempt to select functional variables for models with intractable normalizing constants.