论文标题

视频标题的全面信息集成建模框架

Comprehensive Information Integration Modeling Framework for Video Titling

论文作者

Zhang, Shengyu, Tan, Ziqi, Yu, Jin, Zhao, Zhou, Kuang, Kun, Jiang, Tan, Zhou, Jingren, Yang, Hongxia, Wu, Fei

论文摘要

在电子商务中,消费者生成的视频总体上是对某些产品不同方面的个人喜好的数量。为了更有效地向潜在的消费者推荐这些视频,各种各样和吸引人的视频标题至关重要。但是,消费者生成的视频很少伴随着适当的标题。为了弥合这一差距,我们集成了全面的信息来源,包括消费者生成的视频的内容,消费者提供的叙事评论句子以及产品属性,并在端到端的建模框架中。尽管自动视频标题非常有用且苛刻,但与视频字幕相比,它的解决方案要少得多。后者的重点是生成句子,这些句子将整个视频描述为整个视频,而我们的任务需要具有产品感知的多元视频分析。为了解决此问题,提出的方法包括两个过程,即粒度级别的相互作用建模和抽象级别的故事行摘要。具体而言,颗粒水平的相互作用模型首先利用时间空间标志性提示,描述性词和抽象属性来构建三个单独的图形,并通过图神经网络(GNN)识别每个图中的插入。然后提出了全局本地聚合模块,以模拟跨图的互动,并将异质图聚集到整体图表示。抽象级别的故事情节摘要进一步考虑了框架级视频功能和整体图,以利用产品与背景之间的交互,并生成视频的故事情节主题。我们从TAOBAO的现实世界数据(一个世界领先的电子商务平台的现实世界数据)相应地收集了一个大型数据集,并将公开公开使用脱敏版本,以滋养研究社区的进一步发展...

In e-commerce, consumer-generated videos, which in general deliver consumers' individual preferences for the different aspects of certain products, are massive in volume. To recommend these videos to potential consumers more effectively, diverse and catchy video titles are critical. However, consumer-generated videos seldom accompany appropriate titles. To bridge this gap, we integrate comprehensive sources of information, including the content of consumer-generated videos, the narrative comment sentences supplied by consumers, and the product attributes, in an end-to-end modeling framework. Although automatic video titling is very useful and demanding, it is much less addressed than video captioning. The latter focuses on generating sentences that describe videos as a whole while our task requires the product-aware multi-grained video analysis. To tackle this issue, the proposed method consists of two processes, i.e., granular-level interaction modeling and abstraction-level story-line summarization. Specifically, the granular-level interaction modeling first utilizes temporal-spatial landmark cues, descriptive words, and abstractive attributes to builds three individual graphs and recognizes the intra-actions in each graph through Graph Neural Networks (GNN). Then the global-local aggregation module is proposed to model inter-actions across graphs and aggregate heterogeneous graphs into a holistic graph representation. The abstraction-level story-line summarization further considers both frame-level video features and the holistic graph to utilize the interactions between products and backgrounds, and generate the story-line topic of the video. We collect a large-scale dataset accordingly from real-world data in Taobao, a world-leading e-commerce platform, and will make the desensitized version publicly available to nourish further development of the research community...

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源