论文标题

在$ \ sqrt {\ textit {s} _ {nn}} $ = 200 GEV中,对Au+au碰撞中的线性和模式耦合流谐波的调查

Investigation of the linear and mode-coupled flow harmonics in Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 200 GeV

论文作者

STAR Collaboration, Adam, J., Adamczyk, L., Adams, J. R., Adkins, J. K., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alekseev, I., Anderson, D. M., Aparin, A., Aschenauer, E. C., Ashraf, M. U., Atetalla, F. G., Attri, A., Averichev, G. S., Bairathi, V., Barish, K., Behera, A., Bellwied, R., Bhasin, A., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Brandenburg, J. D., Brandin, A. V., Butterworth, J., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Chakaberia, I., Chaloupka, P., Chan, B. K., Chang, F-H., Chang, Z., Chankova-Bunzarova, N., Chatterjee, A., Chen, D., Chen, J. H., Chen, X., Chen, Z., Cheng, J., Cherney, M., Chevalier, M., Choudhury, S., Christie, W., Chu, X., Crawford, H. J., Csanád, M., Daugherity, M., Dedovich, T. G., Deppner, I. M., Derevschikov, A. A., Didenko, L., Dong, X., Drachenberg, J. L., Dunlop, J. C., Edmonds, T., Elsey, N., Engelage, J., Eppley, G., Esha, R., Esumi, S., Evdokimov, O., Ewigleben, A., Eyser, O., Fatemi, R., Fazio, S., Federic, P., Fedorisin, J., Feng, C. J., Feng, Y., Filip, P., Finch, E., Fisyak, Y., Francisco, A., Fulek, L., Gagliardi, C. A., Galatyuk, T., Geurts, F., Gibson, A., Gopal, K., Grosnick, D., Guryn, W., Hamad, A. I., Hamed, A., Harabasz, S., Harris, J. W., He, S., He, W., He, X. H., Heppelmann, S., Heppelmann, S., Herrmann, N., Hoffman, E., Holub, L., Hong, Y., Horvat, S., Hu, Y., Huang, H. Z., Huang, S. L., Huang, T., Huang, X., Humanic, T. J., Huo, P., Igo, G., Isenhower, D., Jacobs, W. W., Jena, C., Jentsch, A., JI, Y., Jia, J., Jiang, K., Jowzaee, S., Ju, X., Judd, E. G., Kabana, S., Kabir, M. L., Kagamaster, S., Kalinkin, D., Kang, K., Kapukchyan, D., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kelsey, M., Khyzhniak, Y. V., Kikoła, D. P., Kim, C., Kimelman, B., Kincses, D., Kinghorn, T. A., Kisel, I., Kiselev, A., Kocan, M., Kochenda, L., Kosarzewski, L. K., Kramarik, L., Kravtsov, P., Krueger, K., Mudiyanselage, N. Kulathunga, Kumar, L., Elayavalli, R. Kunnawalkam, Kwasizur, J. H., Lacey, R., Lan, S., Landgraf, J. M., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leung, Y. H., Li, C., Li, W., Li, W., Li, X., Li, Y., Liang, Y., Licenik, R., Lin, T., Lin, Y., Lisa, M. A., Liu, F., Liu, H., Liu, P., Liu, P., Liu, T., Liu, X., Liu, Y., Liu, Z., Ljubicic, T., Llope, W. J., Longacre, R. S., Lukow, N. S., Luo, S., Luo, X., Ma, G. L., Ma, L., Ma, R., Ma, Y. G., Magdy, N., Majka, R., Mallick, D., Margetis, S., Markert, C., Matis, H. S., Mazer, J. A., Minaev, N. G., Mioduszewski, S., Mohanty, B., Mondal, M. M., Mooney, I., Moravcova, Z., Morozov, D. A., Nagy, M., Nam, J. D., Nasim, Md., Nayak, K., Neff, D., Nelson, J. M., Nemes, D. B., Nie, M., Nigmatkulov, G., Niida, T., Nogach, L. V., Nonaka, T., Nunes, A. S., Odyniec, G., Ogawa, A., Oh, S., Okorokov, V. A., Page, B. S., Pak, R., Pandav, A., Panebratsev, Y., Pawlik, B., Pawlowska, D., Pei, H., Perkins, C., Pinsky, L., Pintér, R. L., Pluta, J., Porter, J., Posik, M., Pruthi, N. K., Przybycien, M., Putschke, J., Qiu, H., Quintero, A., Radhakrishnan, S. K., Ramachandran, S., Ray, R. L., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ruan, L., Rusnak, J., Sahoo, N. R., Sako, H., Salur, S., Sandweiss, J., Sato, S., Schmidke, W. B., Schmitz, N., Schweid, B. R., Seck, F., Seger, J., Sergeeva, M., Seto, R., Seyboth, P., Shah, N., Shahaliev, E., Shanmuganathan, P. V., Shao, M., Shen, F., Shen, W. Q., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Sikora, R., Simko, M., Singh, J., Singha, S., Smirnov, N., Solyst, W., Sorensen, P., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Stefaniak, M., Stewart, D. J., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Sumbera, M., Summa, B., Sun, X. M., Sun, X., Sun, Y., Sun, Y., Surrow, B., Svirida, D. N., Szymanski, P., Tang, A. H., Tang, Z., Taranenko, A., Tarnowsky, T., Thomas, J. H., Timmins, A. R., Tlusty, D., Tokarev, M., Tomkiel, C. A., Trentalange, S., Tribble, R. E., Tribedy, P., Tripathy, S. K., Tsai, O. D., Tu, Z., Ullrich, T., Underwood, D. G., Upsal, I., Van Buren, G., Vanek, J., Vasiliev, A. N., Vassiliev, I., Videbæk, F., Vokal, S., Voloshin, S. A., Wang, F., Wang, G., Wang, J. S., Wang, P., Wang, Y., Wang, Y., Wang, Z., Webb, J. C., Weidenkaff, P. C., Wen, L., Westfall, G. D., Wieman, H., Wissink, S. W., Witt, R., Wu, Y., Xiao, Z. G., Xie, G., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, Y. F., Xu, Y., Xu, Z., Xu, Z., Yang, C., Yang, Q., Yang, S., Yang, Y., Yang, Z., Ye, Z., Ye, Z., Yi, L., Yip, K., Zbroszczyk, H., Zha, W., Zhang, C., Zhang, D., Zhang, S., Zhang, S., Zhang, X. P., Zhang, Y., Zhang, Y., Zhang, Z. J., Zhang, Z., Zhang, Z., Zhao, J., Zhong, C., Zhou, C., Zhu, X., Zhu, Z., Zurek, M., Zyzak, M.

论文摘要

通常使用的傅立叶膨胀的流量谐波($ \ textit {v} _ {n} $)通常使用Hadron的方位角分布来量化粒子产生的方位角各向异性相对于碰撞对称平面。虽然较低的傅立叶系数($ \ textIt {v} _ {2} $和$ \ textit {v} _ {3} $)与初始状态的相应偏心率更直接相关,而高阶流量谐波($ \ \ \ \\ textit {v} _ {v} _ {n> 3} $)可以降低一个模式。除了对同阶各向异性的线性响应。这些高阶流量谐波及其线性和模式耦合贡献可用于更精确地约束理论模型中介质的初始条件和传输特性。多颗粒方位角累积方法用于测量高阶各向异性流动中的线性和模式耦合贡献,模式耦合的响应系数以及事件平面粒子的事件平面角度的相关性,作为中心性函数的中心函数和AU+AU+AU collisions Collisions yu+Au+Au+Au+Au+Au+Au+Au+Au+Au+aus-au+Au+Au+Au+Au+Au+Au+Au+Au+Au+Au+Au+Au+Au+Au+ $ \ sqrt {\ textIt {s} _ {nn}} $ = 200 GEV。将结果与类似的LHC测量值以及几个具有不同初始条件的粘性流体动力计算进行了比较。

Flow harmonics ($\textit{v}_{n}$) of the Fourier expansion for the azimuthal distributions of hadrons are commonly employed to quantify the azimuthal anisotropy of particle production relative to the collision symmetry planes. While lower order Fourier coefficients ($\textit{v}_{2}$ and $\textit{v}_{3}$) are more directly related to the corresponding eccentricities of the initial state, the higher-order flow harmonics ($\textit{v}_{n>3}$) can be induced by a mode-coupled response to the lower-order anisotropies, in addition to a linear response to the same-order anisotropies. These higher-order flow harmonics and their linear and mode-coupled contributions can be used to more precisely constrain the initial conditions and the transport properties of the medium in theoretical models. The multiparticle azimuthal cumulant method is used to measure the linear and mode-coupled contributions in the higher-order anisotropic flow, the mode-coupled response coefficients, and the correlations of the event plane angles for charged particles as functions of centrality and transverse momentum in Au+Au collisions at nucleon-nucleon center-of-mass energy $\sqrt{\textit{s}_{NN}}$ = 200 GeV. The results are compared to similar LHC measurements as well as to several viscous hydrodynamic calculations with varying initial conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源