论文标题
量子系统压缩:哈密顿的指导行走穿越希尔伯特空间
Quantum System Compression: A Hamiltonian Guided Walk Through Hilbert Space
论文作者
论文摘要
我们提出了一项针对通用多体问题进化的量子系统压缩的系统研究。这种系统的必要数值模拟严重阻碍了希尔伯特空间维度的指数增长,而粒子数量的数量是粒子的数量。对于Hilbert空间尺寸$ n $的\ emph {constant}的哈密顿量系统,其经常范围从$ f _ {\ min} $到$ f _ {\ max} $,我们通过适当的正交分解显示,对于运行时$ t $,主要的动力学在sisspace中占据了一个sisspace的范围。 $ \ delf =(f _ {\ max} -f _ {\ min})t $。我们还展示了初始状态的分布如何进一步压缩系统维度。在陈述的条件下,时间带宽的估计值揭示了有效压缩模型的\ emph {存在},该模型仅源自系统属性,而不依赖于变异模拟器的特定实现,例如机器学习系统或量子设备。但是,找到一个有效的解决方案过程\ emph {}取决于模拟器实现{\ color {black},本文未讨论。此外,我们表明,可以通过多层自动编码器进一步加强由正确的正交分解方法呈现的压缩。最后,我们提出数值插图,以肯定在外部磁场的存在下随着时变的哈密顿动力学的压缩行为。我们还讨论了机器学习工具的发现的潜在含义,以有效地解决多体或其他高维schr {Ö} dinger方程。
We present a systematic study of quantum system compression for the evolution of generic many-body problems. The necessary numerical simulations of such systems are seriously hindered by the exponential growth of the Hilbert space dimension with the number of particles. For a \emph{constant} Hamiltonian system of Hilbert space dimension $n$ whose frequencies range from $f_{\min}$ to $f_{\max}$, we show via a proper orthogonal decomposition, that for a run-time $T$, the dominant dynamics are compressed in the neighborhood of a subspace whose dimension is the smallest integer larger than the time-bandwidth product $\delf=(f_{\max}-f_{\min})T$. We also show how the distribution of initial states can further compress the system dimension. Under the stated conditions, the time-bandwidth estimate reveals the \emph{existence} of an effective compressed model whose dimension is derived solely from system properties and not dependent on the particular implementation of a variational simulator, such as a machine learning system, or quantum device. However, finding an efficient solution procedure \emph{is} dependent on the simulator implementation{\color{black}, which is not discussed in this paper}. In addition, we show that the compression rendered by the proper orthogonal decomposition encoding method can be further strengthened via a multi-layer autoencoder. Finally, we present numerical illustrations to affirm the compression behavior in time-varying Hamiltonian dynamics in the presence of external fields. We also discuss the potential implications of the findings for machine learning tools to efficiently solve the many-body or other high dimensional Schr{ö}dinger equations.