论文标题

线性系统的分布式学习模型预测控制

Distributed Learning Model Predictive Control for Linear Systems

论文作者

Stürz, Yvonne R., Zhu, Edward L., Rosolia, Ugo, Johansson, Karl H., Borrelli, Francesco

论文摘要

本文介绍了具有耦合动力学和状态约束的分布式线性时间不变系统的分布式学习模型预测控制(DLMPC)方案。所提出的解决方案方法基于具有最近邻居通信的在线分布式优化方案。如果控制任务是迭代的,并且可以使用先前可行的迭代数据,则该子系统将利用本地数据,以构建本地终端集和终端成本,这可以保证递归可行性和渐近稳定性以及迭代性能改善迭代。如果很难获得第一个可行的轨迹,或者任务是非涉及的,我们进一步提出了一种有效探索状态空间并生成MPC问题中终端成本和终端约束所需的数据,以安全和分布的方式生成所需的数据。与其他使用结构性正型集合集合的分布式MPC方案相反,提出的方法涉及控制不变集作为终端集,我们不施加任何分布式结构。所提出的迭代方案在轻度条件下融合了潜在的无限视野最佳控制问题的全局最佳解决方案。数值实验证明了提出的DLMPC方案的有效性。

This paper presents a distributed learning model predictive control (DLMPC) scheme for distributed linear time invariant systems with coupled dynamics and state constraints. The proposed solution method is based on an online distributed optimization scheme with nearest-neighbor communication. If the control task is iterative and data from previous feasible iterations are available, local data are exploited by the subsystems in order to construct the local terminal set and terminal cost, which guarantee recursive feasibility and asymptotic stability, as well as performance improvement over iterations. In case a first feasible trajectory is difficult to obtain, or the task is non-iterative, we further propose an algorithm that efficiently explores the state-space and generates the data required for the construction of the terminal cost and terminal constraint in the MPC problem in a safe and distributed way. In contrast to other distributed MPC schemes which use structured positive invariant sets, the proposed approach involves a control invariant set as the terminal set, on which we do not impose any distributed structure. The proposed iterative scheme converges to the global optimal solution of the underlying infinite horizon optimal control problem under mild conditions. Numerical experiments demonstrate the effectiveness of the proposed DLMPC scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源