论文标题
在多种多样的耐铁oble不平等的第二好的常数
The second best constant for the Hardy-Sobolev inequality on manifolds
论文作者
论文摘要
我们认为在riemannian歧管上,在Hardy-Sobolev不平等中的第二好的常数。更确切地说,我们对这种不平等的极端功能的存在感兴趣。 Djadli-Druet [5]解决了这个问题,以解决Sobolev的不平等现象。在这里,我们为单数情况建立了相应的结果。此外,我们对最小化类型的hardy-sobolev方程进行了爆破分析。这产生了有关相关Riemannian功能不平等中第二最佳常数的价值的信息。
We consider the second best constant in the Hardy-Sobolev inequality on a Riemannian manifold. More precisely, we are interested with the existence of extremal functions for this inequality. This problem was tackled by Djadli-Druet [5] for Sobolev inequalities. Here, we establish the corresponding result for the singular case. In addition, we perform a blow-up analysis of solutions Hardy-Sobolev equations of minimizing type. This yields informations on the value of the second best constant in the related Riemannian functional inequality.