论文标题

声涡流:基于声学的隐私性covid-19触点跟踪

ACOUSTIC-TURF: Acoustic-based Privacy-Preserving COVID-19 Contact Tracing

论文作者

Luo, Yuxiang, Zhang, Cheng, Zhang, Yunqi, Zuo, Chaoshun, Xuan, Dong, Lin, Zhiqiang, Champion, Adam C., Shroff, Ness

论文摘要

在本文中,我们建议使用来自无处不在的移动设备发送的声学信号来对抗COVID-19与COVID-19对抗COVID-19。在高水平上,声涡流的自适应广播听起来不可感知的超声信号在附近具有随机生成的ID。同时,该系统接收其他从附近(例如6英尺)用户发送的超声信号。在这样的系统中,单个用户ID不会透露给其他人,并且该系统可以准确地检测出具有6英尺粒度的物理接近的相遇。我们已经在Android上实施了声涡轮的原型,并在不同范围和各种遮挡场景下的基于声学信号的遭遇检测准确性和功耗方面评估了其性能。实验结果表明,声涡流可以检测到位于口袋和外部口袋中的手机6英尺范围内的多个接触。此外,当通过墙壁进行触点跟踪时,我们的基于声学的系统比基于无线信号的方法获得了更高的精度。声涡流正确地确定墙壁相对侧的人没有彼此接触,而基于蓝牙的方法检测到他们之间的不存在。

In this paper, we propose a new privacy-preserving, automated contact tracing system, ACOUSTIC-TURF, to fight COVID-19 using acoustic signals sent from ubiquitous mobile devices. At a high level, ACOUSTIC-TURF adaptively broadcasts inaudible ultrasonic signals with randomly generated IDs in the vicinity. Simultaneously, the system receives other ultrasonic signals sent from nearby (e.g., 6 feet) users. In such a system, individual user IDs are not disclosed to others and the system can accurately detect encounters in physical proximity with 6-foot granularity. We have implemented a prototype of ACOUSTIC-TURF on Android and evaluated its performance in terms of acoustic-signal-based encounter detection accuracy and power consumption at different ranges and under various occlusion scenarios. Experimental results show that ACOUSTIC-TURF can detect multiple contacts within a 6-foot range for mobile phones placed in pockets and outside pockets. Furthermore, our acoustic-signal-based system achieves greater precision than wireless-signal-based approaches when contact tracing is performed through walls. ACOUSTIC-TURF correctly determines that people on opposite sides of a wall are not in contact with one another, whereas the Bluetooth-based approaches detect nonexistent contacts among them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源