论文标题

通过稀疏属性传输与许多域的图像到图像映射

Image-to-image Mapping with Many Domains by Sparse Attribute Transfer

论文作者

Amodio, Matthew, Assouel, Rim, Schmidt, Victor, Sylvain, Tristan, Krishnaswamy, Smita, Bengio, Yoshua

论文摘要

无监督的图像到图像翻译包括在两个域之间学习一对映射,而点之间没有已知的成对对应关系。当前的惯例是使用循环一致的gan来处理此任务:使用歧视器鼓励发电机更改图像以匹配目标域,同时训练生成器与另一个映射倒置。虽然最终以配对的逆函数可能是一个很好的最终结果,但在训练期间始终执行此限制可能会阻碍有效建模。我们提出了一种替代方法,该方法将发生器直接限制为在潜在层中进行简单的稀疏转换,这是由认知神经科学的最新工作激发的,这表明了与意识相对应的表示形式的架构先验。我们以生物为动机的方法导致表现形式更适合通过在潜在空间中解开高级抽象概念来转变。我们证明,与以前依赖于循环一致性损失的不受约束的体系结构相比,使用我们的架构约束,简单的转换可以更有效地学习具有许多不同域的图像到图像域的翻译。

Unsupervised image-to-image translation consists of learning a pair of mappings between two domains without known pairwise correspondences between points. The current convention is to approach this task with cycle-consistent GANs: using a discriminator to encourage the generator to change the image to match the target domain, while training the generator to be inverted with another mapping. While ending up with paired inverse functions may be a good end result, enforcing this restriction at all times during training can be a hindrance to effective modeling. We propose an alternate approach that directly restricts the generator to performing a simple sparse transformation in a latent layer, motivated by recent work from cognitive neuroscience suggesting an architectural prior on representations corresponding to consciousness. Our biologically motivated approach leads to representations more amenable to transformation by disentangling high-level abstract concepts in the latent space. We demonstrate that image-to-image domain translation with many different domains can be learned more effectively with our architecturally constrained, simple transformation than with previous unconstrained architectures that rely on a cycle-consistency loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源