论文标题

广义熵,状态的密度和非扩张性

Generalized entropies, density of states, and non-extensivity

论文作者

Balogh, Sámuel G., Palla, Gergely, Pollner, Péter, Czégel, Dániel

论文摘要

熵的概念将可能配置的数量与大型随机系统中的变量数联系起来。独立或弱相互作用的变量,将配置的数量呈指数为变量的数量,从而使Boltzmann-Gibbs-Shannon Entropy广泛。在具有强烈相互作用变量的系统或由历史依赖性动态驱动的变量的系统中,这不再是正确的。在这里,我们表明,与普遍持有的信念相反,不仅相关性或历史依赖性依赖性,而且偏斜的访问概率分布,即一阶统计数据,在确定配置空间大小和系统大小与系统大小之间的关系中也起着作用,或者等效地,广义熵的扩展形式。我们提出了一个宏观的形式主义,描述了一阶统计,高阶统计和配置空间增长之间的相互作用。我们证明,知道任何两个都强烈限制了第三个的可能性。我们认为,这种统一的自由度约束机制的统一宏观图片为在强烈相互作用的复杂系统的动物园中找到秩序提供了步骤。

The concept of entropy connects the number of possible configurations with the number of variables in large stochastic systems. Independent or weakly interacting variables render the number of configurations scale exponentially with the number of variables, making the Boltzmann-Gibbs-Shannon entropy extensive. In systems with strongly interacting variables, or with variables driven by history-dependent dynamics, this is no longer true. Here we show that contrary to the generally held belief, not only strong correlations or history-dependence, but skewed-enough distribution of visiting probabilities, that is, first-order statistics, also play a role in determining the relation between configuration space size and system size, or, equivalently, the extensive form of generalized entropy. We present a macroscopic formalism describing this interplay between first-order statistics, higher-order statistics, and configuration space growth. We demonstrate that knowing any two strongly restricts the possibilities of the third. We believe that this unified macroscopic picture of emergent degrees of freedom constraining mechanisms provides a step towards finding order in the zoo of strongly interacting complex systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源