论文标题
具有深度感知自动编码器的医学成像中的异常检测
Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders
论文作者
论文摘要
异常检测是基于正常数据的示例识别异常输入的问题。尽管在识别图像异常方面进行了深入学习的最新进展,但这些方法仍然无法处理复杂的医学图像,例如胸部X射线中几乎看不见的异常和淋巴结中的转移。为了解决这个问题,我们引入了一种新的强大图像异常检测方法。它依赖于经典的自动编码器方法,采用重新设计的训练管道来处理高分辨率,复杂的图像和计算图像异常得分的强大方法。我们重新审查了完全无监督的异常检测的问题陈述,在模型设置期间根本没有提供异常示例。我们建议通过使用少量限制可变性的异常来放松这一不切实际的假设,仅仅启动了模型超参数的搜索。我们使用已知基准测试以及两个包含放射学和数字病理图像的医学数据集评估了自然图像数据集的解决方案。提出的方法提出了一个新的强大基线,用于图像异常检测,并且在复杂的医学图像分析任务中胜过最先进的方法。
Anomaly detection is the problem of recognizing abnormal inputs based on the seen examples of normal data. Despite recent advances of deep learning in recognizing image anomalies, these methods still prove incapable of handling complex medical images, such as barely visible abnormalities in chest X-rays and metastases in lymph nodes. To address this problem, we introduce a new powerful method of image anomaly detection. It relies on the classical autoencoder approach with a re-designed training pipeline to handle high-resolution, complex images and a robust way of computing an image abnormality score. We revisit the very problem statement of fully unsupervised anomaly detection, where no abnormal examples at all are provided during the model setup. We propose to relax this unrealistic assumption by using a very small number of anomalies of confined variability merely to initiate the search of hyperparameters of the model. We evaluate our solution on natural image datasets with a known benchmark, as well as on two medical datasets containing radiology and digital pathology images. The proposed approach suggests a new strong baseline for image anomaly detection and outperforms state-of-the-art approaches in complex medical image analysis tasks.