论文标题

虹膜表现攻击检测:我们现在在哪里?

Iris Presentation Attack Detection: Where Are We Now?

论文作者

Boyd, Aidan, Fang, Zhaoyuan, Czajka, Adam, Bowyer, Kevin W.

论文摘要

随着虹膜识别系统的普及,有效的安全措施对演示攻击的重要性变得至关重要。这项工作概述了近两年来发表的虹膜演示攻击检测领域最重要的进步。讨论了新发行的,公共可用的数据集,用于开发和评估虹膜表现攻击检测。可以看出,最近的文献分为三类:传统的“手工制作”特征提取和分类,基于深度学习的解决方案以及融合这两种方法的混合方法。现代方法的结论强调了这项任务的困难。最后,提供了未来研究的可能指导的评论。

As the popularity of iris recognition systems increases, the importance of effective security measures against presentation attacks becomes paramount. This work presents an overview of the most important advances in the area of iris presentation attack detection published in recent two years. Newly-released, publicly-available datasets for development and evaluation of iris presentation attack detection are discussed. Recent literature can be seen to be broken into three categories: traditional "hand-crafted" feature extraction and classification, deep learning-based solutions, and hybrid approaches fusing both methodologies. Conclusions of modern approaches underscore the difficulty of this task. Finally, commentary on possible directions for future research is provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源