论文标题
在宇宙学上可行的动力学重力编织理论中,光明曲面上的兰斯佐斯方程式
Lanczos equation on light-like hypersurfaces in a cosmologically viable class of kinetic gravity braiding theories
论文作者
论文摘要
我们讨论了与i)二阶动力学的一类标量调节重力理论中无效的曲面的连接条件,ii)遵守重力波传播所施加的最近的约束,iii)允许宇宙学上可行的进化。这些要求选择具有线性动力学项依赖性和标量场依赖性耦合的动力学重力编织模型。我们探索一个伪正常的四面,允许量规固定,一个无效的矢量为正常,另一个是横向横向表面的。我们以2+1分解的形式得出了兰开斯方程的概括,将分布源的能量密度,电流和各向同性压力与标量的横向曲率和横向导数中的跳跃相关。此外,我们讨论了标量连接条件及其对分布源的影响。
We discuss junction conditions across null hypersurfaces in a class of scalar-tensor gravity theories with i) second order dynamics, ii) obeying the recent constraints imposed by gravitational wave propagation, and iii) allowing for a cosmologically viable evolution. These requirements select kinetic gravity braiding models with linear kinetic term dependence and scalar field-dependent coupling to curvature. We explore a pseudo-orthonormal tetrad and its allowed gauge fixing, with one null vector standing as the normal, the other being transversal to the hypersurface. We derive a generalization of the Lanczos equation in a 2+1 decomposed form, relating the energy density, current and isotropic pressure of a distributional source to the jumps in the transverse curvature and transverse derivative of the scalar. Additionally we discuss a scalar junction condition and its implications for the distributional source.